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UNIT-I 

DIGITAL IMAGE FUNDAMENTALS & IMAGE TRANSFORMS 

 

DIGITAL IMAGE FUNDAMENTALS: 

The field of digital image processing refers to processing digital images by means of 

digital computer. Digital image is composed of a finite number of elements, each of which has a 

particular location and value. These elements are called picture elements, image elements, pels 

and pixels. Pixel is the term used most widely to denote the elements of digital image. 

An image is a two-dimensional function that represents a measure of some characteristic 

such as brightness or color of a viewed scene. An image is a projection of a 3-D scene into a 2D 

projection plane. 

An image may be defined as a two-dimensional function f(x,y), where x and y are spatial 

(plane) coordinates, and the amplitude of f at any pair of coordinates (x,y) is called the intensity 

of the image at that point. 

The term gray level is used often to refer to the intensity of monochrome images. Color 

images are formed by a combination of individual 2-D images. 

For example: The RGB color system, a color image consists of three (red, green and 

blue) individual component images. For this reason many of the techniques developed for 
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monochrome images can be extended to color images by processing the three component images 

individually. 

An image may be continuous with respect to the x- and y- coordinates and also in 

amplitude. Converting such an image to digital form requires that the coordinates, as well as the 

amplitude, be digitized. 

APPLICATIONS OF DIGITAL IMAGE PROCESSING 

Since digital image processing has very wide applications and almost all of the technical fields 

are impacted by DIP, we will just discuss some of the major applications of DIP. 

Digital image processing has a broad spectrum of applications, such as 

 Remote sensing via satellites and other spacecrafts 

 Image transmission and storage for business applications 

 Medical processing, 

 RADAR (Radio Detection and Ranging) 

 SONAR(Sound Navigation and Ranging) and 

 Acoustic image processing (The study of underwater sound is known as underwater 

acoustics or hydro acoustics.) 

 Robotics and automated inspection of industrial parts. 

Images acquired by satellites are useful in tracking of 

 Earth resources; 

 Geographical mapping; 

 Prediction of agricultural crops, 

 Urban growth and weather monitoring 

 Flood and fire control and many other environmental applications. 

Space image applications include: 

 Recognition and analysis of objects contained in images obtained from deep 

space-probe missions. 

 Image transmission and storage applications occur in broadcast television 

 Teleconferencing 

 Transmission of facsimile images(Printed documents and graphics) for office 

automation 
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Communication over computer networks 

 Closed-circuit television based security monitoring systems and 

 In military communications. 

Medical applications: 

 Processing of chest X- rays 

 Cineangiograms 

 Projection images of transaxial tomography and 

 Medical images that occur in radiology nuclear magnetic resonance(NMR) 

 Ultrasonic scanning 

IMAGE PROCESSING TOOLBOX (IPT) is a collection of functions that extend the 

capability of the MATLAB numeric computing environment. These functions, and the 

expressiveness of the MATLAB language, make many image-processing operations easy to 

write in a compact, clear manner, thus providing a ideal software prototyping environment for 

the solution of image processing problem. 

Components of Image processing System: 

Figure : Components of Image processing System 
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Image Sensors: With reference to sensing, two elements are required to acquire digital image. 

The first is a physical device that is sensitive to the energy radiated by the object we wish to 

image and second is specialized image processing hardware. 

Specialize image processing hardware: It consists of the digitizer just mentioned, plus hardware 

that performs other primitive operations such as an arithmetic logic unit, which performs arithmetic 

such addition and subtraction and logical operations in parallel on images. 

Computer: It is a general purpose computer and can range from a PC to a supercomputer 

depending on the application. In dedicated applications, sometimes specially designed computer 

are used to achieve a required level of performance 

Software: It consists of specialized modules that perform specific tasks a well designed package 

also includes capability for the user to write code, as a minimum, utilizes the specialized module. 

More sophisticated software packages allow the integration of these modules. 

Mass storage: This capability is a must in image processing applications. An image of size 1024 

x1024 pixels, in which the intensity of each pixel is an 8- bit quantity requires one Megabytes of 

storage space if the image is not compressed .Image processing applications falls into three 

principal categories of storage 

i) Short term storage for use during processing 

ii) On line storage for relatively fast retrieval 

iii) Archival storage such as magnetic tapes and disks 

Image display: Image displays in use today are mainly color TV monitors. These monitors are 

driven by the outputs of image and graphics displays cards that are an integral part of computer 

system. 

Hardcopy devices: The devices for recording image includes laser printers, film cameras, heat 

sensitive devices inkjet units and digital units such as optical and CD ROM disk. Films provide 

the highest possible resolution, but paper is the obvious medium of choice for written 

applications. 

Networking: It is almost a default function in any computer system in use today because of the 

large amount of data inherent in image processing applications. The key consideration in image 

transmission bandwidth. 

Fundamental Steps in Digital Image Processing: 

There are two categories of the steps involved in the image processing – 
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1. Methods whose outputs are input are images. 

2. Methods whose outputs are attributes extracted from those images. 
 

Fig: Fundamental Steps in Digital Image Processing 

Image acquisition: It could be as simple as being given an image that is already in digital form. 

Generally the image acquisition stage involves processing such scaling. 

Image Enhancement: It is among the simplest and most appealing areas of digital image 

processing. The idea behind this is to bring out details that are obscured or simply to highlight 

certain features of interest in image. Image enhancement is a very subjective area of image 

processing. 

 

Image Restoration: It deals with improving the appearance of an image. It is an objective approach, 

in the sense that restoration techniques tend to be based on mathematical or probabilistic models of 

image processing. Enhancement, on the other hand is based on human subjective preferences 

regarding what constitutes a “good” enhancement result. 
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Color image processing: It is an area that is been gaining importance because of the use of 

digital images over the internet. Color image processing deals with basically color models and 

their implementation in image processing applications. 

Wavelets and Multiresolution Processing: These are the foundation for representing image in 

various degrees of resolution. 

Compression: It deals with techniques reducing the storage required to save an image, or the 

bandwidth required to transmit it over the network. It has to major approaches a) Lossless 

Compression b) Lossy Compression 

Morphological processing: It deals with tools for extracting image components that are useful 

in the representation and description of shape and boundary of objects. It is majorly used in 

automated inspection applications. 

Representation and Description: It always follows the output of segmentation step that is, raw 

pixel data, constituting either the boundary of an image or points in the region itself. In either 

case converting the data to a form suitable for computer processing is necessary. 

Recognition: It is the process that assigns label to an object based on its descriptors. It is the last 

step of image processing which use artificial intelligence of software. 

Knowledge base: 

Knowledge about a problem domain is coded into an image processing system in the form of a 

knowledge base. This knowledge may be as simple as detailing regions of an image where the 

information of the interest in known to be located. Thus limiting search that has to be conducted 

in seeking the information. The knowledge base also can be quite complex such interrelated list 

of all major possible defects in a materials inspection problems or an image database containing 

high resolution satellite images of a region in connection with change detection application. 

A Simple Image Model: 

An image is denoted by a two dimensional function of the form f{x, y}. The value or amplitude 

of f at spatial coordinates {x,y} is a positive scalar quantity whose physical meaning is 
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determined by the source of the image. When an image is generated by a physical process, its 

values are proportional to energy radiated by a physical source. As a consequence, f(x,y) must be 

nonzero and finite; that is o<f(x,y) <co The function f(x,y) may be characterized by two 

components- The amount of the source illumination incident on the scene being viewed. 

(a) The amount of the source illumination reflected back by the objects in the scene 

These are called illumination and reflectance components and are denoted by i(x,y) an r (x,y) 

respectively. 

The functions combine as a product to form f(x,y). We call the intensity of a monochrome image 

at any coordinates (x,y) the gray level (l) of the image at that point l= f (x, y.) 

L min ≤ l ≤ Lmax 

Lmin is to be positive and Lmax must be finite 

Lmin = imin rmin 

Lmax = imax rmax 

The interval [Lmin, Lmax] is called gray scale. Common practice is to shift this interval 

numerically to the interval [0, L-l] where l=0 is considered black and l= L-1 is considered white 

on the gray scale. All intermediate values are shades of gray of gray varying from black to white. 

SAMPLING AND QUANTIZATION: 

To create a digital image, we need to convert the continuous sensed data into digital from. This 

involves two processes – sampling and quantization. An image may be continuous with respect 

to the x and y coordinates and also in amplitude. To convert it into digital form we have to 

sample the function in both coordinates and in amplitudes. 

Digitalizing the coordinate values is called sampling. Digitalizing the amplitude values is called 

quantization. There is a continuous the image along the line segment AB. To simple this 

function, we take equally spaced samples along line AB. The location of each samples is given 

by a vertical tick back (mark) in the bottom part. The samples are shown as block squares 

superimposed on function the set of these discrete locations gives the sampled function. 

In order to form a digital, the gray level values must also be converted (quantized) into discrete 

quantities. So we divide the gray level scale into eight discrete levels ranging from eight level 

values. The continuous gray levels are quantized simply by assigning one of the eight discrete 

gray levels to each sample. The assignment it made depending on the vertical proximity of a 

simple to a vertical tick mark. 
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Starting at the top of the image and covering out this procedure line by line produces a two 

dimensional digital image. 

Digital Image definition: 

A digital image f(m,n) described in a 2D discrete space is derived from an analog image 

f(x,y) in a 2D continuous space through a sampling process that is frequently referred to as 

digitization. The mathematics of that sampling process will be described in subsequent Chapters. 

For now we will look at some basic definitions associated with the digital image. The effect of 

digitization is shown in figure. 

The 2D continuous image f(x,y) is divided into N rows and M columns. The intersection 

of a row and a column is termed a pixel. The value assigned to the integer coordinates (m,n) with 

m=0,1,2..N-1 and n=0,1,2…N-1 is f(m,n). In fact, in most cases, is actually a function of many 

variables including depth, color and time (t). 

 

There are three types of computerized processes in the processing of image 

1) Low level process -these involve primitive operations such as image processing to reduce 

noise, contrast enhancement and image sharpening. These kind of processes are characterized by 

fact the both inputs and output are images. 

2) Mid level image processing - it involves tasks like segmentation, description of those objects 

to reduce them to a form suitable for computer processing, and classification of individual 

objects. The inputs to the process are generally images but outputs are attributes extracted from 

images. 

3) High level processing – It involves “making sense” of an ensemble of recognized objects, as 

in image analysis, and performing the cognitive functions normally associated with vision. 

Representing Digital Images: 

The result of sampling and quantization is matrix of real numbers. Assume that an image 

f(x,y) is sampled so that the resulting digital image has M rows and N Columns. The values of 
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the coordinates (x,y) now become discrete quantities thus the value of the coordinates at orgin 

become 9X,y) =(o,o) The next Coordinates value along the first signify the iamge along the first 

row. it does not mean that these are the actual values of physical coordinates when the image 

was sampled. 

 

Thus the right side of the matrix represents a digital element, pixel or pel. The matrix can be 

represented in the following form as well. The sampling process may be viewed as partitioning 

the xy plane into a grid with the coordinates of the center of each grid being a pair of elements 

from the Cartesian products Z2 which is the set of all ordered pair of elements (Zi, Zj) with Zi 

and Zj being integers from Z. Hence f(x,y) is a digital image if gray level (that is, a real number 

from the set of real number R) to each distinct pair of coordinates (x,y). This functional 

assignment is the quantization process. If the gray levels are also integers, Z replaces R, the and 

a digital image become a 2D function whose coordinates and she amplitude value are integers. 

Due to processing storage and hardware consideration, the number gray levels typically is an 

integer power of 2. 

L=2
k
 

Then, the number, b, of bites required to store a digital image is b=M *N* k When M=N, the 

equation become b=N
2
*k 

When an image can have 2k gray levels, it is referred to as “k- bit”. An image with 256 possible 

gray levels is called an “8- bit image” (256=2
8
). 

Spatial and Gray level resolution: 

Spatial resolution is the smallest discernible details are an image. Suppose a chart can be 

constructed with vertical lines of width w with the space between the also having width W, so a 

line pair consists of one such line and its adjacent space thus. The width of the line pair is 2w 

and there is 1/2w line pair per unit distance resolution is simply the smallest number of 

discernible line pair unit distance. 
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Gray levels resolution refers to smallest discernible change in gray levels. Measuring discernible 

change in gray levels is a highly subjective process reducing the number of bits R while 

repairing the spatial resolution constant creates the problem of false contouring. 

It is caused by the use of an insufficient number of gray levels on the smooth areas of the 

digital image . It is called so because the rides resemble top graphics contours in a map. It is 

generally quite visible in image displayed using 16 or less uniformly spaced gray levels. 

Image sensing and Acquisition: 

The types of images in which we are interested are generated by the combination of an 

“illumination” source and the reflection or absorption of energy from that source by the elements 

of the “scene” being imaged. We enclose illumination and scene in quotes to emphasize the fact 

that they are considerably more general than the familiar situation in which a visible light source 

illuminates a common everyday 3-D (three-dimensional) scene. For example, the illumination 

may originate from a source of electromagnetic energy such as radar, infrared, or X-ray energy. 

But, as noted earlier, it could originate from less traditional sources, such as ultrasound or even a 

computer-generated illumination pattern. Similarly, the scene elements could be familiar objects, 

but they can just as easily be molecules, buried rock formations, or a human brain. We could 

even image a source, such as acquiring images of the sun. Depending on the nature of the source, 

illumination energy is reflected from, or transmitted through, objects. An example in the first 

category is light reflected from a planar surface. An example in the second category is when X- 

rays pass through a patient’s body for the purpose of generating a diagnostic X-ray film. In some 

applications, the reflected or transmitted energy is focused onto a photo converter (e.g., a 

phosphor screen), which converts the energy into visible light. Electron microscopy and some 

applications of gamma imaging use this approach. The idea is simple: Incoming energy is 

transformed into a voltage by the combination of input electrical power and sensor material that 

is responsive to the particular type of energy being detected. The output voltage waveform is the 

response of the sensor(s), and a digital quantity is obtained from each sensor by digitizing its 

response. In this section, we look at the principal modalities for image sensing and generation. 
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Fig:Single Image sensor 
 

Fig: Line Sensor 
 

Fig: Array sensor 

Image Acquisition using a Single sensor: 

The components of a single sensor. Perhaps the most familiar sensor of this type is the 

photodiode, which is constructed of silicon materials and whose output voltage waveform is 

proportional to light. The use of a filter in front of a sensor improves selectivity. For example, a 

green (pass) filter in front of a light sensor favors light in the green band of the color spectrum. 

As a consequence, the sensor output will be stronger for green light than for other components in 

the visible spectrum. 
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In order to generate a 2-D image using a single sensor, there has to be relative displacements in 

both the x- and y-directions between the sensor and the area to be imaged. Figure shows an 

arrangement used in high-precision scanning, where a film negative is mounted onto a drum 

whose mechanical rotation provides displacement in one dimension. The single sensor is 

mounted on a lead screw that provides motion in the perpendicular direction. Since mechanical 

motion can be controlled with high precision, this method is an inexpensive (but slow) way to 

obtain high-resolution images. Other similar mechanical arrangements use a flat bed, with the 

sensor moving in two linear directions. These types of mechanical digitizers sometimes are 

referred to as microdensitometers. 

Image Acquisition using a Sensor strips: 

A geometry that is used much more frequently than single sensors consists of an in-line 

arrangement of sensors in the form of a sensor strip, shows. The strip provides imaging elements 

in one direction. Motion perpendicular to the strip provides imaging in the other direction. This 

is the type of arrangement used in most flat bed scanners. Sensing devices with 4000 or more in- 

line sensors are possible. In-line sensors are used routinely in airborne imaging applications, in 

which the imaging system is mounted on an aircraft that flies at a constant altitude and speed 

over the geographical area to be imaged. One dimensional imaging sensor strips that respond to 

various bands of the electromagnetic spectrum are mounted perpendicular to the direction of 

flight. The imaging strip gives one line of an image at a time, and the motion of the strip 

completes the other dimension of a two-dimensional image. Lenses or other focusing schemes 

are used to project area to be scanned onto the sensors. Sensor strips mounted in a ring 

configuration are used in medical and industrial imaging to obtain cross-sectional (“slice”) 

images of 3-D objects. 
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Fig: Image Acquisition using linear strip and circular strips. 

Image Acquisition using a Sensor Arrays: 

The individual sensors arranged in the form of a 2-D array. Numerous electromagnetic and some 

ultrasonic sensing devices frequently are arranged in an array format. This is also the 

predominant arrangement found in digital cameras. A typical sensor for these cameras is a CCD 

array, which can be manufactured with a broad range of sensing properties and can be packaged 

in rugged arrays of elements or more. CCD sensors are used widely in digital cameras and other 

light sensing instruments. The response of each sensor is proportional to the integral of the light 

energy projected onto the surface of the sensor, a property that is used in astronomical and other 

applications requiring low noise images. Noise reduction is achieved by letting the sensor 

integrate the input light signal over minutes or even hours. The two dimensional, its key 

advantage is that a complete image can be obtained by focusing the energy pattern onto the 

surface of the array. Motion obviously is not necessary, as is the case with the sensor 

arrangements This figure shows the energy from an illumination source being reflected from a 

scene element, but, as mentioned at the beginning of this section, the energy also could be 

transmitted through the scene elements. The first function performed by the imaging system is to 

collect the incoming energy and focus it onto an image plane. If the illumination is light, the 

front end of the imaging system is a lens, which projects the viewed scene onto the lens focal 

plane. The sensor array, which is coincident with the focal plane, produces outputs proportional 
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to the integral of the light received at each sensor. Digital and analog circuitry sweep these 

outputs and convert them to a video signal, which is then digitized by another section of the 

imaging system. 

Image sampling and Quantization: 

To create a digital image, we need to convert the continuous sensed data into digital form. This 

involves two processes: sampling and quantization. A continuous image, f(x, y), that we want to 

convert to digital form. An image may be continuous with respect to the x- and y-coordinates, 

and also in amplitude. To convert it to digital form, we have to sample the function in both 

coordinates and in amplitude. Digitizing the coordinate values is called sampling. Digitizing the 

amplitude values is called quantization. 
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Digital Image representation: 

Digital image is a finite collection of discrete samples (pixels) of any observable object. The 

pixels represent a two- or higher dimensional “view” of the object, each pixel having its own 

discrete value in a finite range. The pixel values may represent the amount of visible light, infra 

red light, absortation of x-rays, electrons, or any other measurable value such as ultrasound wave 

impulses. The image does not need to have any visual sense; it is sufficient that the samples  

form a two-dimensional spatial structure that may be illustrated as an image. The images may be 

obtained by a digital camera, scanner, electron microscope, ultrasound stethoscope, or any other 

optical or non-optical sensor. Examples of digital image are: 

 digital photographs 

 satellite images 

 radiological images (x-rays, mammograms) 

 binary images, fax images, engineering drawings 

Computer graphics, CAD drawings, and vector graphics in general are not considered in this 

course even though their reproduction is a possible source of an image. In fact, one goal of 

intermediate level image processing may be to reconstruct a model (e.g. vector representation) 

for a given digital image. 

RELATIONSHIP BETWEEN PIXELS: 

We consider several important relationships between pixels in a digital image. 

NEIGHBORS OF A PIXEL 

• A pixel p at coordinates (x,y) has four horizontal and vertical neighbors whose 

coordinates are given by: 

(x+1,y), (x-1, y), (x, y+1), (x,y-1) 
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This set of pixels, called the 4-neighbors or p, is denoted by N4(p). Each pixel is one unit 

distance from (x,y) and some of the neighbors of p lie outside the digital image if (x,y) is on the 

border of the image. The four diagonal neighbors of p have coordinates and are denoted by ND 

(p). 

(x+1, y+1), (x+1, y-1), (x-1, y+1), (x-1, y-1) 
 

 

These points, together with the 4-neighbors, are called the 8-neighbors of p, denoted by 

N8 (p). 
 

As before, some of the points in ND (p) and N8 (p) fall outside the image if (x,y) is on the 

border of the image. 

ADJACENCY AND CONNECTIVITY 

Let v be the set of gray –level values used to define adjacency, in a binary image, v={1}. In a 

gray-scale image, the idea is the same, but V typically contains more elements, for example, V 

= {180, 181, 182, …, 200}. 

If the possible intensity values 0 – 255, V set can be any subset of these 256 values. 

if we are reference to adjacency of pixel with value. 

Three types of adjacency 

 4- Adjacency – two pixel P and Q with value from V are 4 –adjacency if A is in the set 

N4(P) 
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 8- Adjacency – two pixel P and Q with value from V are 8 –adjacency if A is in the set 

N8(P) 

 M-adjacency –two pixel P and Q with value from V are m – adjacency if (i) Q is in N4(p) 

or (ii) Q is in ND(q) and the set N4(p) ∩ N4(q) has no pixel whose values are from V. 

• Mixed adjacency is a modification of 8-adjacency. It is introduced to eliminate the 

ambiguities that often arise when 8-adjacency is used. 

• For example: 
 

Fig:1.8(a) Arrangement of pixels; (b) pixels that are 8-adjacent (shown dashed) to the 

center pixel; (c) m-adjacency. 

Types of Adjacency: 

• In this example, we can note that to connect between two pixels (finding a path between 

two pixels): 

– In 8-adjacency way, you can find multiple paths between two pixels 

– While, in m-adjacency, you can find only one path between two pixels 

• So, m-adjacency has eliminated the multiple path connection that has been generated by 

the 8-adjacency. 

• Two subsets S1 and S2 are adjacent, if some pixel in S1 is adjacent to some pixel in S2. 

Adjacent means, either 4-, 8- or m-adjacency. 

A Digital Path: 

• A digital path (or curve) from pixel p with coordinate (x,y) to pixel q with coordinate (s,t) is a 

sequence of distinct pixels with coordinates (x0,y0), (x1,y1), …, (xn, yn) where (x0,y0) = (x,y) 

and (xn, yn) = (s,t) and pixels (xi, yi) and (xi-1, yi-1) are adjacent for 1 ≤ i ≤ n 

• n is the length of the path 

• If (x0,y0) = (xn, yn), the path is closed. 

We can specify 4-, 8- or m-paths depending on the type of adjacency specified. 

• Return to the previous example: 



 

19 1.  

 

 

Fig:1.8 (a) Arrangement of pixels; (b) pixels that are 8-adjacent(shown dashed) to the 

center pixel; (c) m-adjacency. 

In figure (b) the paths between the top right and bottom right pixels are 8-paths. And the 

path between the same 2 pixels in figure (c) is m-path 

Connectivity: 

• Let S represent a subset of pixels in an image, two pixels p and q are said to be connected 

in S if there exists a path between them consisting entirely of pixels in S. 

• For any pixel p in S, the set of pixels that are connected to it in S is called a connected 

component of S. If it only has one connected component, then set S is called a connected 

set. 

Region and Boundary: 

• REGION: Let R be a subset of pixels in an image, we call R a region of the image if R is  

a connected set. 

• BOUNDARY: The boundary (also called border or contour) of a region R is the 

set of pixels in the region that have one or more neighbors that are not in R. 

If R happens to be an entire image, then its boundary is defined as the set of pixels in the first and 

last rows and columns in the image. This extra definition is required because an image has no 

neighbors beyond its borders. Normally, when we refer to a region, we are referring to subset of 

an image, and any pixels in the boundary of the region that happen to coincide with the border of 

the image are included implicitly as part of the region boundary. 

DISTANCE MEASURES: 

For pixel p,q and z with coordinate (x.y) ,(s,t) and (v,w) respectively D is a distance function or 

metric if 

D [p.q] ≥ O {D[p.q] = O iff p=q} 

D [p.q] = D [p.q] and 

D [p.q] ≥ O {D[p.q]+D(q,z) 

• The Euclidean Distance between p and q is defined as: 
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De (p,q) = [(x – s)2 + (y - t)2]1/2
 

 

Pixels having a distance less than or equal to some value r from (x,y) are the points 

contained in a disk of radius ‘ r ‘centered at (x,y) 

 

• The D4 distance (also called city-block distance) between p and q is defined as: 

D4 (p,q) = | x – s | + | y – t | 

Pixels having a D4 distance from (x,y), less than or equal to some value r form  a 

Diamond centered at (x,y) 

 

Example: 

The  pixels  with  distance  D4   ≤  2  from (x,y)  form the following contours of 

constant distance. 

The pixels with D4 = 1 are the 4-neighbors of (x,y) 
 

• The D8 distance (also called chessboard distance) between p and q is defined as: 

D8 (p,q) = max(| x – s |,| y – t |) 

Pixels having a D8 distance from (x,y), less than or equal to some value r form a square 

Centered at (x,y). 
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Example: 

D8 distance ≤ 2 from (x,y) form the following contours of constant distance. 
 

• Dm distance: 

It is defined as the shortest m-path between the points. 

In this case, the distance between two pixels will depend on the values of the 

pixels along the path, as well as the values of their neighbors. 

• Example: 

Consider the following arrangement of pixels and assume that p, p2, and p4 have 

value 1 and that p1 and p3 can have can have a value of 0 or 1 Suppose that we 

consider the adjacency of pixels values 1 (i.e. V = {1}) 

Now, to compute the Dm between points p and p4 

Here we have 4 cases: 

Case1: If p1 =0 and p3 = 0 

The length of the shortest m-path 

(the Dm distance) is 2 (p, p2, p4) 
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Case2: If p1 =1 and p3 = 0 

now, p1 and p will no longer be adjacent (see m-adjacency definition) 

then, the length of the shortest 

path will be 3 (p, p1, p2, p4) 

 

Case3: If p1 =0 and p3 = 1 

The same applies here, and the shortest –m-path will be 3 (p, p2, p3, p4) 
 

Case4: If p1 =1 and p3 = 1 

The length of the shortest m-path will be 4 (p, p1 , p2, p3, p4) 
 

IMAGE TRANSFORMS: 

2-D FFT: 
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WALSH TRANSFORM: 

We define now the 1-D Walsh transform as follows: 
 

The above is equivalent to: 
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The transform kernel values are obtained from: 
 

Therefore, the array formed by the Walsh matrix is a real symmetric matrix. It is easily shown 

that it has orthogonal columns and rows 

1-D Inverse Walsh Transform 

 

 

The above is again equivalent to 
 

The array formed by the inverse Walsh matrix is identical to the one formed by the forward 

Walsh matrix apart from a multiplicative factor N. 

2-D Walsh Transform 

We define now the 2-D Walsh transform as a straightforward extension of the 1-D transform: 

 

 
• The above is equivalent to: 

 

Inverse Walsh Transform 

We define now the Inverse 2-D Walsh transform. It is identical to the forward 2-D Walsh 

transform 
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• The above is equivalent to: 
 

 
 

HADAMARD TRANSFORM: 

We define now the 2-D Hadamard transform. It is similar to the 2-D Walsh transform. 
 

 

The above is equivalent to: 
 

We define now the Inverse 2-D Hadamard transform. It is identical to the forward 2-D Hadamard 

transform. 

 

 
The above is equivalent to: 

 

DISCRETE COSINE TRANSFORM (DCT) : 

The discrete cosine transform (DCT) helps separate the image into parts (or spectral sub-bands) 

of differing importance (with respect to the image's visual quality). The DCT is similar to the 

discrete Fourier transform: it transforms a signal or image from the spatial domain to the 

frequency domain. 

The general equation for a 1D (N data items) DCT is defined by the following equation: 
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and the corresponding inverse 1D DCT transform is simple F-1(u), i.e.: 

where 

The general equation for a 2D (N by M image) DCT is defined by the following equation: 
 

and the corresponding inverse 2D DCT transform is simple F-1(u,v), i.e.: 

where 

 

The basic operation of the DCT is as follows: 

 The input image is N by M; 

 f(i,j) is the intensity of the pixel in row i and column j; 

 F(u,v) is the DCT coefficient in row k1 and column k2 of the DCT matrix. 

 For most images, much of the signal energy lies at low frequencies; these appear in the 

upper left corner of the DCT. 

 Compression is achieved since the lower right values represent higher frequencies, and 

are often small - small enough to be neglected with little visible distortion. 

 The DCT input is an 8 by 8 array of integers. This array contains each pixel's gray scale 

level; 

 8 bit pixels have levels from 0 to 255. 

DISCRETE WAVELET TRANSFORM (DWT): 

There are many discrete wavelet transforms they are Coiflet, Daubechies, Haar, Symmlet 

etc. 

Haar Wavelet Transform 

The Haar wavelet is the first known wavelet. The Haar wavelet is also the simplest 

possible wavelet. The Haar Wavelet can also be described as a step function f(x) shown in Eq 
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1 

f (x)  

1 



0  x  1/ 2, 

1/ 2  x  1, 

otherwise. 

Each step in the one dimensional Haar wavelet transform calculates a set of wavelet 

coefficients (Hi-D) and a set of averages (Lo-D). If a data set s0, s1,…, sN-1 contains N elements, 

there will be N/2 averages and N/2 coefficient values. The averages are stored in the lower half 

of the N element array and the coefficients are stored in the upper half. 

The Haar equations to calculate an average ( ai ) and a wavelet coefficient ( ci ) from the 

data set are shown below Eq 

ai   
si   si    1 

 
 

2 
ci   

si   si    1 
 

 

2 

In wavelet terminology the Haar average is calculated by the scaling function. The 

coefficient is calculated by the wavelet function. 

Two-Dimensional Wavelets 

The two-dimensional wavelet transform is separable, which means we can apply a one- 

dimensional wavelet transform to an image. We apply one-dimensional DWT to all rows and 

then one-dimensional DWTs to all columns of the result. This is called the standard 

decomposition and it is illustrated in figure 4.8. 

 

 

Figure The standard decomposition of the two-dimensional DWT. 

We can also apply a wavelet transform differently. Suppose we apply a wavelet transform 

to an image by rows, then by columns, but using our transform at one scale only. This technique 

will produce a result in four quarters: the top left will be a half-sized version of the image and the 

other quarter’s high-pass filtered images. These quarters will contain horizontal, vertical, and 

diagonal edges of the image. We then apply a one-scale DWT to the top-left quarter, creating 

0 
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smaller images, and so on. This is called the nonstandard decomposition, and is illustrated in 

figure 4.9. 

 

 

Figure 4.9 The nonstandard decomposition of the two-dimensional DWT. 

Steps for performing a one-scale wavelet transform are given below: 

Step 1: Convolve the image rows with the low-pass filter. 

Step 2 : Convolve the columns of the result of step 1 with the low-pass filter and rescale this to 

half its size by sub-sampling. 

Step 3 : Convolve the result of step 1 with high-pass filter and again sub-sample to obtain an 

image of half the size. 

Step 4 : Convolve the original image rows with the high-pass filter. 

Step 5: Convolve the columns of the result of step 4 with the low-pass filter and recycle this to 

half its size by sub-sampling. 

Step 6 :Convolve the result of step 4 with the high-pass filter and again sub-sample to obtain an 

image of half the size. 

At the end of these steps there are four images, each half the size of original. They are 

1. The low-pass / low-pass image (LL), the result of step 2, 

2. The low-pass / high-pass image (LH), the result of step 3, 

3. The high-pass / low-pass image (HL), the result of step 5, and 

4. The high-pass / high-pass image (HH), the result of step 6 

These images can be placed into a single image grid as shown in the figure 4.10. 
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Figure 4.10 the one-scale wavelet transforms in terms of filters. 

Figure 4.11 describes the basic dwt decomposition steps for an image in a block diagram 

form. The two-dimensional DWT leads to a decomposition of image into four components CA, 

CH, CV and CD, where CA are approximation and CH, CV, CD are details in three orientations 

(horizontal, vertical, and diagonal), these are same as LL, LH, HL, and HH. In these coefficients 

the watermark can be embedded. 

 

Figure 4.11 DWT decomposition steps for an image. 
 

 
 

 
 

Figure 4.12 Original image and DWT decomposed image. 
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An example of a discrete wavelet transform on an image is shown in Figure above. On 

the left is the original image data, and on the right are the coefficients after a single pass of the 

wavelet transform. The low-pass data is the recognizable portion of the image in the upper left 

corner. The high-pass components are almost invisible because image data contains mostly low 

frequency information. 
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UNIT -II 

IMAGE ENHANCEMENT 

 
Image enhancement approaches fall into two broad categories: spatial domain methods 

and frequency domain methods. The term spatial domain refers to the image plane itself, and 

approaches in this category are based on direct manipulation of pixels in an image. 

Frequency domain processing techniques are based on modifying the Fourier transform 

of an image. Enhancing an image provides better contrast and a more detailed image as compare to non 

enhanced image. Image enhancement has very good applications. It is used to enhance medical images, 

images captured in remote sensing, images from satellite e.t.c. As indicated previously, the term 

spatial domain refers to the aggregate of pixels composing an image. Spatial domain methods are 

procedures that operate directly on these pixels. Spatial domain processes will be denoted by the 

expression. 

g(x,y) = T[f(x,y)] 

where f(x, y) is the input image, g(x, y) is the processed image, and T is an operator on f, 

defined over some neighborhood of (x, y). The principal approach in defining a neighborhood 

about a point (x, y) is to use a square or rectangular subimage area centered at (x, y), as Fig. 2.1 

shows. The center of the subimage is moved from pixel to pixel starting, say, at the top left 

corner. The operator T is applied at each location (x, y) to yield the output, g, at that location.  

The process utilizes only the pixels in the area of the image spanned by the neighborhood. 

 

Fig.: 3x3 neighborhood about a point (x,y) in an image. 

The simplest form of T is when the neighborhood is of size 1*1 (that is, a single pixel). In this 

case, g depends only on the value of f at (x, y), and T becomes a gray-level (also called an 

intensity or mapping) transformation function of the form 
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s = T ( r ) 

where r is the pixels of the input image and s is the pixels of the output image. T is a 

transformation function that maps each value of ‘r’ to each value of ‘s’. 

For example, if T(r) has the form shown in Fig. 2.2(a), the effect of this transformation would be 

to produce an image of higher contrast than the original by darkening the levels below m and 

brightening the levels above m in the original image. In this technique, known as contrast 

stretching, the values of r below m are compressed by the transformation function into a narrow 

range of s, toward black.The opposite effect takes place for values of r above m. 

In the limiting case shown in Fig. 2.2(b), T(r) produces a two-level (binary) image. A 

mapping of this form is called a thresholding function. 

One of the principal approaches in this formulation is based on the use of so-called masks 

(also referred to as filters, kernels, templates, or windows). Basically, a mask is a  small (say, 

3*3) 2-D array, such as the one shown in Fig. 2.1, in which the values of the mask coefficients 

determine the nature of the process, such as image sharpening. Enhancement techniques based 

on this type of approach often are referred to as mask processing or filtering. 

Fig. 2.2 Gray level transformation functions for contrast enhancement. 

Image enhancement can be done through gray level transformations which are discussed 

below. 

BASIC GRAY LEVEL TRANSFORMATIONS: 

 Image negative 

 Log transformations 

 Power law transformations 

 Piecewise-Linear transformation functions 



 

34  

LINEAR TRANSFORMATION: 

First we will look at the linear transformation. Linear transformation includes simple 

identity and negative transformation. Identity transformation has been discussed in our tutorial 

of image transformation, but a brief description of this transformation has been given here. 

Identity transition is shown by a straight line. In this transition, each value of the input 

image is directly mapped to each other value of output image. That results in the same input 

image and output image. And hence is called identity transformation. It has been shown below: 

 

Fig. Linear transformation between input and output. 

NEGATIVE TRANSFORMATION: 

The second linear transformation is negative transformation, which is invert of identity 

transformation. In negative transformation, each value of the input image is subtracted from the 

L-1 and mapped onto the output image 

IMAGE NEGATIVE: The image negative with gray level value in the range of [0, L-1] is obtained by negative 

transformation given by S = T(r) or 

S = L -1 – r 

Where r= gray level value at pixel (x,y) 

L is the largest gray level consists in the image 

It results in getting photograph negative. It is useful when for enhancing white details embedded in dark regions of 

the image. 

The overall graph of these transitions has been shown below. 
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Input gray level, r 

 

Fig. Some basic gray-level transformation functions used for image enhancement. 

In this case the following transition has been done. 

s = (L – 1) – r 

since the input image of Einstein is an 8 bpp image, so the number of levels in this image are 

256. Putting 256 in the equation, we get this 

s = 255 – r 

So each value is subtracted by 255 and the result image has been shown above. So what 

happens is that, the lighter pixels become dark and the darker picture becomes light. And it 

results in image negative. 

It has been shown in the graph below. 
 

Fig. Negative transformations. 

LOGARITHMIC TRANSFORMATIONS: 

Logarithmic transformation further contains two type of transformation. Log transformation and 

inverse log transformation. 

LOG TRANSFORMATIONS: 

The log transformations can be defined by this formula 

s = c log(r + 1). 

Negative 

nth root 

Log 
nth power 

Identity Inverse Log 
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Where s and r are the pixel values of the output and the input image and c is a constant. The 

value 1 is added to each of the pixel value of the input image because if there is a pixel intensity 

of 0 in the image, then log (0) is equal to infinity. So 1 is added, to make the minimum value at 

least 1. 

During log transformation, the dark pixels in an image are expanded as compare to the higher 

pixel values. The higher pixel values are kind of compressed in log transformation. This result 

in following image enhancement. 

An another way of representing LOG TRANSFORMATIONS: Enhance details in the darker regions of an 

image at the expense of detail in brighter regions. 

T(f) = C * log (1+r) 

 Here C is constant and r ≥ 0. 

 The shape of the curve shows that this transformation maps the narrow range of low gray level values in 

the input image into a wider range of output image. 

 The opposite is true for high level values of input image. 
 

Fig. log transformation curve input vs output 

POWER – LAW TRANSFORMATIONS: 

There are further two transformation is power law transformations, that include nth 

power and nth root transformation. These transformations can be given by the expression: 

s=crγ
 

This symbol γ is called gamma, due to which this transformation is also known as 

gamma transformation. 

Variation in the value of γ varies the enhancement of the images. Different display 

devices / monitors have their own gamma correction, that’s why they display their image at 

different intensity. 
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where c and g are positive constants. Sometimes Eq. (6) is written as S = C (r +ε) γ to 

account for an offset (that is, a measurable output when the input is zero). Plots of s versus r for 

various values of γ are shown in Fig. 2.10. As in the case of the log transformation, power-law 

curves with fractional values of γ map a narrow range of dark input values into a wider range of 

output values, with the opposite being true for higher values of input levels. Unlike the log 

function, however, we notice here a family of possible transformation curves obtained simply by 

varying γ. 

In Fig that curves generated with values of γ>1 have exactly The opposite effect as those 

generated with values of γ<1. Finally, we Note that Eq. (6) reduces to the identity transformation 

when c=γ=1. 

 

 

Fig. 2.13 Plot of the equation S = crγ for various values of γ (c =1 in all cases). 

This type of transformation is used for enhancing images for different type of display devices. 

The gamma of different display devices is different. For example Gamma of CRT lies in between 

of 1.8 to 2.5, that means the image displayed on CRT is dark. 

Varying gamma (γ) obtains family of possible transformation curves S = C* r γ
 

Here C and γ are positive constants. Plot of S versus r for various values of γ is 

γ > 1 compresses dark values 

Expands bright values 

γ < 1 (similar to Log transformation) 

Expands dark values 

Compresses bright values 

When C = γ = 1 , it reduces to identity transformation . 



 

38  

CORRECTING GAMMA: 

s=crγ 

s=cr (1/2.5) 

The same image but with different gamma values has been shown here. 

Piecewise-Linear Transformation Functions: 

A complementary approach to the methods discussed in the previous three sections is to 

use piecewise linear functions. The principal advantage of piecewise linear functions over the 

types of functions which we have discussed thus far is that the form of piecewise functions can 

be arbitrarily complex. 

The principal disadvantage of piecewise functions is that their specification requires 

considerably more user input. 

Contrast stretching: One of the simplest piecewise linear functions is a contrast-stretching 

transformation. Low-contrast images can result from poor illumination, lack of dynamic range in 

the imaging sensor, or even wrong setting of a lens aperture during image acquisition. 

S= T(r ) 

Figure x(a) shows a typical transformation used for contrast stretching. The locations of 

points (r1, s1) and (r2, s2) control the shape of the transformation 

Function. If r1=s1 and r2=s2, the transformation is a linear function that produces No 

changes in gray levels. If r1=r2, s1=0and s2= L-1, the transformation Becomes a thresholding 

function that creates a binary image, as illustrated In fig. 2.2(b). 

Intermediate values of ar1, s1b and ar2, s2b produce various degrees Of spread in the 

gray levels of the output image, thus affecting its contrast. In general, r1≤ r2 and s1 ≤ s2 is 

assumed so that the function is single valued and Monotonically increasing. 
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Fig. x Contrast stretching. (a) Form of transformation function. (b) A low-contrast stretching. (c) 

Result of high contrast stretching. (d) Result of thresholding (original image courtesy of 

Dr.Roger Heady, Research School of Biological Sciences, Australian National University 

Canberra Australia. 

Figure x(b) shows an 8-bit image with low contrast. Fig. x(c) shows the result of contrast 

stretching, obtained by setting (r1, s1 )=(rmin, 0) and (r2, s2)=(rmax,L-1) where rmin and rmax 

denote the minimum and maximum gray levels in the image, respectively.Thus, the 

transformation function stretched the levels linearly from their original range to the full range [0, 

L-1]. Finally, Fig. x(d) shows the result of using the thresholding function defined previously, 

with r1=r2=m, the mean gray level in the image. The original image on which these results are 

based is a scanning electron microscope image of pollen, magnified approximately 700 times. 

Gray-level slicing: 

Highlighting a specific range of gray levels in an image often is desired. Applications 

include enhancing features such as masses of water in satellite imagery and enhancing flaws in 

X-ray images. 
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There are several ways of doing level slicing, but most of them are variations of two 

basic themes. One approach is to display a high value for all gray levels in the range of interest 

and a low value for all other gray levels. 

This transformation, shown in Fig. y(a), produces a binary image. The second approach, 

based on the transformation shown in Fig.y (b), brightens the desired range of gray levels but 

preserves the background and gray-level tonalities in the image. Figure y (c) shows a gray-scale 

image, and Fig. y(d) shows the result of using the transformation in Fig. y(a).Variations of the 

two transformations shown in Fig. are easy to formulate. 

 

Fig. y (a)This transformation highlights range [A,B] of gray levels and reduces all others to a 

constant level (b) This transformation highlights range [A,B] but preserves all other levels. (c) 

An image . (d) Result of using the transformation in (a). 

BIT-PLANE SLICING: 

Instead of highlighting gray-level ranges, highlighting the contribution made to total 

image appearance by specific bits might be desired. Suppose that each pixel in an image is 

represented by 8 bits. Imagine that the image is composed of eight 1-bit planes, ranging from bit- 

plane 0 for the least significant bit to bit plane 7 for the most significant bit. In terms of 8-bit 

bytes, plane 0 contains all the lowest order bits in the bytes comprising the pixels in the image 

and plane 7 contains all the high-order bits. 

Figure 3.12 illustrates these ideas, and Fig. 3.14 shows the various bit planes for the 

image shown in Fig. 3.13. Note that the higher-order bits (especially the top four) contain the 

majority of the visually significant data. The other bit planes contribute to more subtle details in 

the image. Separating a digital image into its bit planes is useful for analyzing the relative 
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importance played by each bit of the image, a process that aids in determining the adequacy of 

the number of bits used to quantize each pixel. 

 

In terms of bit-plane extraction for an 8-bit image, it is not difficult to show that the 

(binary) image for bit-plane 7 can be obtained by processing the input image with a thresholding 

gray-level transformation function that (1) maps all levels in the image between 0 and 127 to one 

level (for example, 0); and (2) maps all levels between 129 and 255 to another (for example, 

255).The binary image for bit-plane 7 in Fig. 3.14 was obtained in just this manner. It is left as  

an exercise 

(Problem 3.3) to obtain the gray-level transformation functions that would yield the other bit 

planes. 

Histogram Processing: 

The histogram of a digital image with gray levels in the range [0, L-1] is a discrete function 

of the form 

H(rk)=nk 

where rk is the kth gray level and nk is the number of pixels in the image having the level rk.. 

A normalized histogram is given by the equation 

p(rk)=nk/n for k=0,1,2,…..,L-1 

P(rk) gives the estimate of the probability of occurrence of gray level rk. 

The sum of all components of a normalized histogram is equal to 1. 

The histogram plots are simple plots of p(rk)=nk versus rk. 

In the dark image the components of the histogram are concentrated on the low (dark) side of 

the gray scale. In case of bright image the histogram components are baised towards the high 

side of the gray scale. The histogram of a low contrast image will be narrow and will be 

centered towards the middle of the gray scale. 
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The components of the histogram in the high contrast image cover a broad range of the gray 

scale. The net effect of this will be an image that shows a great deal of gray levels details and 

has high dynamic range. 

 
 

 

Histogram Equalization: 

Histogram equalization is a common technique for enhancing the appearance of images. 

Suppose we have an image which is predominantly dark. Then its histogram would be skewed 

towards the lower end of the grey scale and all the image detail are compressed into the dark 
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end of the histogram. If we could ‘stretch out’ the grey levels at the dark end to produce a more 

uniformly distributed histogram then the image would become much clearer. 

Let there be a continuous function with r being gray levels of the image to be enhanced. The 

range of r is [0, 1] with r=0 representing black and r=1 representing white. The transformation 

function is of the form 

S=T(r) where 0<r<1 

It produces a level s for every pixel value r in the original image. 
 

The transformation function is assumed to fulfill two condition T(r) is single valued and 

monotonically increasing in the internal 0<T(r)<1 for 0<r<1.The transformation function 

should be single valued so that the inverse transformations should exist. Monotonically 

increasing condition preserves the increasing order from black to white in the output image. 

The second conditions guarantee that the output gray levels will be in the same range as the 

input levels. The gray levels of the image may be viewed as random variables in the interval 

[0.1]. The most fundamental descriptor of a random variable is its probability density 

function (PDF) Pr(r) and Ps(s) denote the probability density functions of random variables 

r and s respectively. Basic results from an elementary probability theory states that if Pr(r) 

and Tr are known and T-1(s) satisfies conditions (a), then the probability density function 

Ps(s) of the transformed variable is given by the formula 

 

Thus the PDF of the transformed variable s is the determined by the gray levels PDF of the 

input image and by the chosen transformations function. 
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A transformation function of a particular importance in image processing 
 

 

This is the cumulative distribution function of r. 

L is the total number of possible gray levels in the image. 

IMAGE ENHANCEMENT IN FREQUENCY DOMAIN 

BLURRING/NOISE REDUCTION: Noise characterized by sharp transitions in image 

intensity. Such transitions contribute significantly to high frequency components of Fourier 

transform. Intuitively, attenuating certain high frequency components result in blurring and 

reduction of image noise. 

IDEAL LOW-PASS FILTER: 

Cuts off all high-frequency components at a distance greater than a certain distance from 

origin (cutoff frequency). 

H (u,v) = 1, if D(u,v) ≤ D0 

0, if D(u,v) ˃ D0 

Where D0 is a positive constant and D(u,v) is the distance between a point (u,v) in the 

frequency domain and the center of the frequency rectangle; that is 

D(u,v)  =  [(u-P/2)2   +  (v-Q/2)2] 1/2
 

Where as P and Q are the padded sizes from the basic equations 

Wraparound error in their circular convolution can be avoided by padding these functions 

with zeros, 

VISUALIZATION: IDEAL LOW PASS FILTER: 

Aa shown in fig.below 
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Fig: ideal low pass filter 3-D view and 2-D view and line graph. 

EFFECT OF DIFFERENT CUT OFF FREQUENCIES: 

Fig.below(a) Test pattern of size 688x688 pixels, and (b) its Fourier spectrum. The spectrum is 

double the image size due to padding but is shown in half size so that it fits in the page. The 

superimposed circles have radii equal to 10, 30, 60, 160 and 460 with respect to the full-size 

spectrum image. These radii enclose 87.0, 93.1, 95.7, 97.8 and 99.2% of the padded image  

power respectively. 

 

Fig: (a) Test patter of size 688x688 pixels (b) its Fourier spectrum 
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Fig: (a) original image, (b)-(f) Results of filtering using ILPFs with cutoff frequencies set 

at radii values 10, 30, 60, 160 and 460, as shown in fig.2.2.2(b). The power removed by these 

filters was 13, 6.9, 4.3, 2.2 and 0.8% of the total, respectively. 

As the cutoff frequency decreases, 

 image becomes more blurred 

 Noise becomes increases 

 Analogous to larger spatial filter sizes 

The severe blurring in this image is a clear indication that most of the sharp detail information in 

the picture is contained in the 13% power removed by the filter. As the filter radius is increases 

less and less power is removed, resulting in less blurring. Fig. (c ) through (e) are characterized 

by “ringing” , which becomes finer in texture as the amount of high frequency content removed 

decreases. 

WHY IS THERE RINGING? 
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Ideal low-pass filter function is a rectangular function 

The inverse Fourier transform of a rectangular function is a sinc function. 
 

Fig. Spatial representation of ILPFs of order 1 and 20 and corresponding intensity 

profiles through the center of the filters( the size of all cases is 1000x1000 and the cutoff 

frequency is 5), observe how ringing increases as a function of filter order. 

BUTTERWORTH LOW-PASS FILTER: 

Transfor funtion of a Butterworth lowpass filter (BLPF) of order n, and with cutoff 

frequency at a distance D0 from the origin, is defined as 

-  

Transfer function does not have sharp discontinuity establishing cutoff between passed 

and filtered frequencies. 

Cut off frequency D0 defines point at which H(u,v) = 0.5 
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Fig. (a) perspective plot of a Butterworth lowpass-filter transfer function. (b) Filter 

displayed as an image. (c)Filter radial cross sections of order 1 through 4. 

Unlike the ILPF, the BLPF transfer function does not have a sharp discontinuity that 

gives a clear cutoff between passed and filtered frequencies. 

BUTTERWORTH LOW-PASS FILTERS OF DIFFEREN T FREQUENCIES: 
 

Fig. (a) Original image.(b)-(f) Results of filtering using BLPFs of order 2, with cutoff 

frequencies at the radii 

Fig. shows the results of applying the BLPF of eq. to fig.(a), with n=2 and D0 equal to 

the five radii in fig.(b) for the ILPF, we note here a smooth transition in blurring as a function of 

increasing cutoff frequency. Moreover, no ringing is visible in any of the images processed with 

this particular BLPF, a fact attributed to the filter’s smooth transition between low and high 

frequencies. 
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A BLPF of order 1 has no ringing in the spatial domain. Ringing generally is 

imperceptible in filters of order 2, but can become significant in filters of higher order. 

Fig.shows a comparison between the spatial representation of BLPFs of various orders 

(using a cutoff frequency of 5 in all cases). Shown also is the intensity profile along a horizontal 

scan line through the center of each filter. The filter of order 2 does show mild ringing and small 

negative values, but they certainly are less pronounced than in the ILPF. A butter worth filter of 

order 20 exhibits characteristics similar to those of the ILPF (in the limit, both filters are 

identical). 

 

Fig.2.2.7 (a)-(d) Spatial representation of BLPFs of order 1, 2, 5 and 20 and 

corresponding intensity profiles through the center of the filters (the size in all cases is 1000 x 

1000 and the cutoff frequency is 5) Observe how ringing increases as a function of filter order. 

GAUSSIAN LOWPASS FILTERS: 

The form of these filters in two dimensions is given by 
 

 This transfer function is smooth , like Butterworth filter. 

 Gaussian in frequency domain remains a Gaussian in spatial domain 

 Advantage: No ringing artifacts. 

Where D0 is the cutoff frequency. When D(u,v) = D0, the GLPF is down to 0.607 of  its 

maximum value. This means that a spatial Gaussian filter, obtained by computing the IDFT of 

above equation., will have no ringing. Fig..shows a perspective plot, image display and radial 

cross sections of a GLPF function. 
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Fig. (a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image. 

(c). Filter radial cross sections for various values of D0 

 

Fig.(a) Original image. (b)-(f) Results of filtering using GLPFs with cutoff frequencies at 

the radii shown in fig.2.2.2. compare with fig.2.2.3 and fig.2.2.6 
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Fig. (a) Original image (784x 732 pixels). (b) Result of filtering using a GLPF with D0 = 

100. (c) Result of filtering using a GLPF with D0 = 80. Note the reduction in fine skin lines in 

the magnified sections in (b) and (c). 

Fig. shows an application of lowpass filtering for producing a smoother, softer-looking 

result from a sharp original. For human faces, the typical objective is to reduce the sharpness of 

fine skin lines and small blemished. 

IMAGE SHARPENING USING FREQUENCY DOMAIN FILTERS: 

An image can be smoothed by attenuating the high-frequency components of its Fourier 

transform. Because edges and other abrupt changes in intensities are associated with high- 

frequency components, image sharpening can be achieved in the frequency domain by high pass 

filtering, which attenuates the low-frequency components without disturbing high-frequency 

information in the Fourier transform. 

The filter function H(u,v) are understood to be discrete functions of size PxQ; that is the 

discrete frequency variables are in the range u = 0,1,2,…….P-1 and v = 0,1,2,…….Q-1. 

The meaning of sharpening is 

 Edges and fine detail characterized by sharp transitions in image intensity 

 Such transitions contribute significantly to high frequency components of Fourier 

transform 
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 Intuitively, attenuating certain low frequency components and preserving high 

frequency components result in sharpening. 

Intended goal is to do the reverse operation of low-pass filters 

 When low-pass filter attenuated frequencies, high-pass filter passes them 

 When high-pass filter attenuates frequencies, low-pass filter passes them. 

A high pass filter is obtained from a given low pass filter using the equation. 

H hp (u,v) = 1- Htp (u,v) 

Where Hlp (u,v) is the transfer function of the low-pass filter. That is when the low-pass 

filter attenuates frequencies, the high-pass filter passed them, and vice-versa. 

We consider ideal, Butter-worth, and Gaussian high-pass filters. As in the previous 

section, we illustrate the characteristics of these filters in both the frequency and spatial domains. 

Fig.. shows typical 3-D plots, image representations and cross sections for these filters. As 

before, we see that the Butter-worth filter represents a transition between the sharpness of the 

ideal filter and the broad smoothness of the Gaussian filter. Fig.discussed in the sections the 

follow, illustrates what these filters look like in the spatial domain. The spatial filters were 

obtained and displayed by using the procedure used. 
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Fig: Top row: Perspective plot, image representation, and cross section of a typical ideal 

high-pass filter. Middle and bottom rows: The same sequence for typical butter-worth and 

Gaussian high-pass filters. 

IDEAL HIGH-PASS FILTER: 

A 2-D ideal high-pass filter (IHPF) is defined as 

H (u,v) = 0, if D(u,v) ≤ D0 

1, if D(u,v) ˃ D0 

Where D0 is the cutoff frequency and D(u,v) is given by eq. As intended, the IHPF is the 

opposite of the ILPF in the sense that it sets to zero all frequencies inside a circle of radius D0 

while passing, without attenuation, all frequencies outside the circle. As in case of the ILPF, the 

IHPF is not physically realizable. 

SPATIAL REPRESENTATION OF HIGHPASS FILTERS: 
 

Fig.. Spatial representation of typical (a) ideal (b) Butter-worth and (c) Gaussian 

frequency domain high-pass filters, and corresponding intensity profiles through their centers. 

We can expect IHPFs to have the same ringing properties as ILPFs. This is demonstrated 

clearly in Fig.. which consists of various IHPF results using the original image in Fig.(a) with D0 

set to 30, 60,and 160 pixels, respectively. The ringing in Fig. (a) is so severe that it produced 

distorted, thickened object boundaries (e.g.,look at the large letter “a” ). Edges of the top three 

circles do not show well because they are not as strong as the other edges in the image (the 

intensity of these three objects is much closer to the background intensity, giving discontinuities 

of smaller magnitude). 

FILTERED RESULTS: IHPF: 
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Fig.. Results of high-pass filtering the image in Fig.(a) using an IHPF with D0 = 30, 60, 

and 160. 

The situation improved somewhat with D0 = 60. Edge distortion is quite evident still, but 

now we begin to see filtering on the smaller objects. Due to the now familiar inverse  

relationship between the frequency and spatial domains, we know that the spot size of this filter 

is smaller than the spot of the filter with D0 = 30. The result for D0 = 160 is closer to what a 

high-pass filtered image should look like. Here, the edges are much cleaner and less distorted, 

and the smaller objects have been filtered properly. 

Of course, the constant background in all images is zero in these high-pass  filtered 

images because highpass filtering is analogous to differentiation in the spatial domain. 

BUTTER-WORTH HIGH-PASS FILTERS: 

A 2-D Butter-worth high-pass filter (BHPF) of order n and cutoff frequency D0 is defined as 
 

Where D(u,v) is given by Eq.(3). This expression follows directly from Eqs.(3) and (6). The 

middle row of Fig.2.2.11. shows an image and cross section of the BHPF function. 

Butter-worth high-pass filter to behave smoother than IHPFs. Fig.2.2.14.shows the performance 

of a BHPF of order 2 and with D0 set to the same values as in Fig.2.2.13. The boundaries are 

much less distorted than in Fig.2.2.13. even for the smallest value of cutoff frequency. 

FILTERED RESULTS: BHPF: 
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Fig. Results of high-pass filtering the image in Fig.2.2.2(a) using a BHPF of order 2 with 

D0 = 30, 60, and 160 corresponding to the circles in Fig.2.2.2(b). These results are much 

smoother than those obtained with an IHPF. 

GAUSSIAN HIGH-PASS FILTERS: 

The transfer function of the Gaussian high-pass filter(GHPF) with cutoff frequency locus 

at a distance D0 from the center of the frequency rectangle is given by 

 

 
Where D(u,v) is given by Eq.(4). This expression follows directly from Eqs.(2) and (6). 

The third row in Fig.2.2.11. shows a perspective plot, image and cross section of the GHPF 

function. Following the same format as for the BHPF, we show in Fig.2.2.15. comparable results 

using GHPFs. As expected, the results obtained are more gradual than with the previous two 

filters. 

FILTERED RESULTS:GHPF: 
 



 

56  

Fig. Results of high-pass filtering the image in fig.(a) using a GHPF with D0 = 30,  60 

and 160, corresponding to the circles in Fig.(b). 



Image Enhancement: Frequency domain methods 
 
 
• The concept of filtering is easier to visualize in the frequency 

domain. Therefore, enhancement of image ),( nmf  can be done 
in the frequency domain, based on its DFT ),( vuF .  

 
• This is particularly useful, if the spatial extent of the point-

spread sequence ),( nmh  is large. In this case, the convolution  
 
  
 
 
 
 
 
 

may be computationally unattractive.  
 
• We can therefore directly design a transfer function ),( vuH  and 

implement the enhancement in the frequency domain as 
follows:  

 
 
 
 
 
 
 
 
 
 
 
 

),(),(),( vuFvuHvuG =

Enhanced Image Given Image 

Transfer function 

),(*),(),( nmfnmhnmg =

Enhanced Image Given Image 

PSS 



 

Lowpass filter ing  
 
 
 

• Edges and sharp transitions in grayvalues in an image contribute 
significantly to high-frequency content of its Fourier transform. 

 
• Regions of relatively uniform grayvalues in an image contribute 

to low-frequency content of its Fourier transform.  
 
• Hence, an image can be smoothed in the Frequency domain by 

attenuating the high-frequency content of its Fourier transform.  
This would be a lowpass filter! 

 
• For simplicity, we will consider only those filters that are real 

and radially symmetric.  
 
• An ideal lowpass filter  with cutoff frequency 0r : 
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• Note that the origin (0, 0) is at the center and not the corner of 
the image (recall the “fftshift”  operation).  

 
• The abrupt transition from 1 to 0 of the transfer function 

),( vuH  cannot be realized in practice, using electronic 
components. However, it can be simulated on a computer.  

 
 
 
 
 
 
 

Ideal LPF with 570 =r  



Ideal LPF examples 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
• Notice the severe r inging effect in the blurred images, which 

is a characteristic of ideal filters. It is due to the discontinuity 
in the filter transfer function.  

Original Image LPF image, 570 =r  

LPF image, 360 =r  LPF image, 260 =r  



Choice of cutoff frequency in ideal LPF 
• The cutoff frequency 0r  of the ideal LPF determines the amount 

of frequency components passed by the filter.  
• Smaller the value of 0r , more the number of image components 

eliminated by the filter.  
• In general, the value of 0r  is chosen such that most components 

of interest are passed through, while most components not of 
interest are eliminated.  

• Usually, this is a set of conflicting requirements. We will see 
some details of this is image restoration 

• A useful way to establish a set of standard cut-off frequencies is 
to compute circles which enclose a specified fraction of the total 
image power. 

• Suppose � �−

=

−

=

=
1

0

1

0

),(
N

v

M

u
T vuPP , where 

2
),(),( vuFvuP = , is the 

total image power. 
• Consider a circle of radius )(0 αr  as a cutoff frequency with 

respect to a threshold α such that T
v u

PvuP α=∑∑ ),( .  

• We can then fix a threshold α and obtain an appropriate cutoff 

frequency )(0 αr .  
 
 
 
 
 
 
 



Butterworth lowpass filter  
 

• A two-dimensional Butterworth lowpass filter has transfer 
function: 

 
• n: filter order, r0: cutoff frequency 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
• Frequency response does not have a sharp transition as in the 

ideal LPF.  
 
• This is more appropriate for image smoothing than the ideal 

LPF, since this not introduce ringing.  
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Butterworth LPF with 
360 =r and 1=n  



 

Butterworth LPF example 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Original Image LPF image, 180 =r  

LPF image, 130 =r  LPF image, 100 =r  



 
 

Butterworth LPF example: False 
contour ing 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Image with false contouring 
due to insufficient bits used 
for quantization 

Lowpass filtered version of 
previous image 



 

Butterworth LPF example: Noise 
filter ing 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Original Image 

Noisy Image 

LPF  Image 



 
 

Gaussian Low pass filters 
 

• The form of a Gaussian lowpass filter in two-dimensions is 

given by 
22 2/),(),( σ−= vuDevuH , where 22),( vuvuD +=  is the 

distance from the origin in the frequency plane.  

• The parameter σ measures the spread or dispersion of the 
Gaussian curve. Larger the value of σ, larger the cutoff 
frequency and milder the filtering.  

• When σ=),( vuD , the filter is down to 0.607 of its maximum 
value of 1.  

• See Example 4.6 in the text for an illustration.  

• Also read section 4.3.4 for an application of lowpass filtering to 
text images.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Highpass filter ing  
 
 
 

• Edges and sharp transitions in grayvalues in an image contribute 
significantly to high-frequency content of its Fourier transform. 

 
• Regions of relatively uniform grayvalues in an image contribute 

to low-frequency content of its Fourier transform.  
 
• Hence, image sharpening in the Frequency domain can be done 

by attenuating the low-frequency content of its Fourier 
transform.  This would be a highpass filter! 

 
• For simplicity, we will consider only those filters that are real 

and radially symmetric.  
 
• An ideal highpass filter  with cutoff frequency 0r : 
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• Note that the origin (0, 0) is at the center and not the corner of 
the image (recall the “fftshift”  operation).  

 
• The abrupt transition from 1 to 0 of the transfer function 

),( vuH  cannot be realized in practice, using electronic 
components. However, it can be simulated on a computer.  

 
 
 
 
 
 

Ideal HPF with 360 =r  



 

Ideal HPF examples 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

• Notice the severe r inging effect in the output images, which 
is a characteristic of ideal filters. It is due to the discontinuity 
in the filter transfer function.  

Original Image HPF image, 180 =r  

HPF image, 360 =r  HPF image, 260 =r  



Butterworth highpass filter  
 

• A two-dimensional Butterworth highpass filter has transfer 
function: 

 
• n: filter order, r0: cutoff frequency 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
• Frequency response does not have a sharp transition as in the 

ideal HPF.  
 
• This is more appropriate for image sharpening than the ideal 

HPF, since this not introduce ringing.  
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Butterworth HPF with 
470 =r  and 2 



 

Butterworth HPF example 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Original Image HPF image, 470 =r  

HPF image, 360 =r  HPF image, 810 =r  



Gaussian High pass filters 
 

• The form of a Gaussian lowpass filter in two-dimensions is 

given by 
22 2/),(1),( σ−−= vuDevuH , where 22),( vuvuD +=  is 

the distance from the origin in the frequency plane.  

• The parameter σ measures the spread or dispersion of the 
Gaussian curve. Larger the value of σ, larger the cutoff 
frequency and more severe the filtering.  

• See Example in section 4.4.3 of text for an illustration.  
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UNIT-III 

IMAGE RESTORATION 

 
IMAGE RESTORATION: 

Restoration improves image in some predefined sense. It is an objective process. 

Restoration attempts to reconstruct an image that has been degraded by using a priori 

knowledge of the degradation phenomenon. These techniques are oriented toward modeling 

the degradation and then applying the inverse process in order to recover the original image. 

Restoration techniques are based on mathematical or probabilistic models of image 

processing. Enhancement, on the other hand is based on human subjective preferences 

regarding what constitutes a “good” enhancement result. Image Restoration refers to a class 

of methods that aim to remove or reduce the degradations that have occurred while the 

digital image was being obtained. All natural images when displayed have gone through 

some sort of degradation: 

 During display mode 

 Acquisition mode, or 

 Processing mode 

 Sensor noise 

 Blur due to camera mis focus 

 Relative object-camera motion 

 Random atmospheric turbulence 

 Others 

Degradation Model: 

Degradation process operates on a degradation function that operates on an input 

image with an additive noise term. Input image is represented by using the notation f(x,y), 

noise term can be represented as η(x,y).These two terms when combined gives the result as 

g(x,y). If we are given g(x,y), some knowledge about the degradation function H or J and 

some knowledge about the additive noise teem η(x,y), the objective of restoration is to 

obtain an estimate f'(x,y) of the original image. We want the estimate to be as close as 

possible to the original image. The more we know about h and η , the closer f(x,y) will be to 
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f'(x,y). If it is a linear position invariant process, then degraded image is given in the spatial 

domain by 

g(x,y)=f(x,y)*h(x,y)+η(x,y) 

h(x,y) is spatial representation of degradation function and symbol * represents 

convolution. In frequency domain we may write this equation as 

G(u,v)=F(u,v)H(u,v)+N(u,v) 

The terms in the capital letters are the Fourier Transform of the corresponding terms in the 

spatial domain. 

 

Fig: A model of the image Degradation / Restoration process 

Noise Models: 

The principal source of noise in digital images arises during image acquisition and 

/or transmission. The performance of imaging sensors is affected by a variety of factors, 

such as environmental conditions during image acquisition and by the quality of the sensing 

elements themselves. Images are corrupted during transmission principally due to 

interference in the channels used for transmission. Since main sources of noise presented in 

digital images are resulted from atmospheric disturbance and image sensor circuitry, 

following assumptions can be made i.e. the noise model is spatial invariant (independent of 

spatial location). The noise model is uncorrelated with the object function. 

Gaussian Noise: 

These noise models are used frequently in practices because of its tractability in both spatial and 

frequency domain. The PDF of Gaussian random variable is 
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Where z represents the gray level, μ= mean of average value of z, σ= standard deviation. 
 

Rayleigh Noise: 

Unlike Gaussian distribution, the Rayleigh distribution is no symmetric. It is given by the 

formula. 

The mean and variance of this density is 
 

 

(iii) Gamma Noise: 

The PDF of Erlang noise is given by 
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The mean and variance of this density are given by 
 

 

Its shape is similar to Rayleigh disruption. This equation is referred to as gamma density it 

is correct only when the denominator is the gamma function. 

(iv) Exponential Noise: 

Exponential distribution has an exponential shape. The PDF of exponential noise is given as 
 

Where a>0. The mean and variance of this density are given by 
 

 

 

(v) Uniform Noise: 

The PDF of uniform noise is given by 
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The mean and variance of this noise is 
 

 

(vi) Impulse (salt & pepper) Noise: 

In this case, the noise is signal dependent, and is multiplied to the image. 

The PDF of bipolar (impulse) noise is given by 

 

If b>a, gray level b will appear as a light dot in image. Level a will appear like a dark dot. 
 

Restoration in the presence of Noise only- Spatial filtering: 
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When the only degradation present in an image is noise, i.e. 

g(x,y)=f(x,y)+η(x,y) 

or 

G(u,v)= F(u,v)+ N(u,v) 

The noise terms are unknown so subtracting them from g(x,y) or G(u,v) is not a 

realistic approach. In the case of periodic noise it is possible to estimate N(u,v) from 

the spectrum G(u,v). 

So N(u,v) can be subtracted from G(u,v) to obtain an estimate of original image. Spatial 

filtering can be done when only additive noise is present. The following techniques can 

be used to reduce the noise effect: 

i) Mean Filter: 

ii) (a)Arithmetic Mean filter: 

It is the simplest mean filter. Let Sxy represents the set of coordinates in the sub 

image of size m*n centered at point (x,y). The arithmetic mean filter computes the average 

value of the corrupted image g(x,y) in the area defined by Sxy. The value of the restored 

image f at any point (x,y) is the arithmetic mean computed using the pixels in the region 

defined by Sxy. 

This operation can be using a convolution mask in which all coefficients have value 

1/mn A mean filter smoothes local variations in image Noise is reduced as a result of 

blurring. For every pixel in the image, the pixel value is replaced by the mean value of its 

neighboring pixels with a weight .This will resulted in a smoothing effect in the image. 

(b)Geometric Mean filter: 

An image restored using a geometric mean filter is given by the expression 
 

Here, each restored pixel is given by the product of the pixel in the sub image window, 

raised to the power 1/mn. A geometric mean filters but it to loose image details in the 

process. 
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(c) Harmonic Mean filter: 

The harmonic mean filtering operation is given by the expression 
 

The harmonic mean filter works well for salt noise but fails for pepper noise. It does well 

with Gaussian noise also. 

(d) Order statistics filter: 

Order statistics filters are spatial filters whose response is based on ordering the pixel 

contained in the image area encompassed by the filter. The response of the filter at any 

point is determined by the ranking result. 

(e) Median filter: 

It is the best order statistic filter; it replaces the value of a pixel by the median of gray 

levels in the Neighborhood of the pixel. 

The original of the pixel is included in the computation of the median of the filter are quite 

possible because for certain types of random noise, the provide excellent noise reduction 

capabilities with considerably less blurring then smoothing filters of similar size. These are 

effective for bipolar and unipolor impulse noise. 

(e) Max and Min filter: 

Using the l00th percentile of ranked set of numbers is called the max filter and is given by 

the equation 

It is used for finding the brightest point in an image. Pepper noise in the image has very low 

values, it is reduced by max filter using the max selection process in the sublimated area 

sky. The 0th percentile filter is min filter. 

 

This filter is useful for flinging the darkest point in image. Also, it reduces salt noise of 

the min operation. 
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(f) Midpoint filter: 

The midpoint filter simply computes the midpoint between the maximum and minimum 

values in the area encompassed by 

It comeliness the order statistics and averaging .This filter works best for randomly 

distributed noise like Gaussian or uniform noise. 

Periodic Noise by Frequency domain filtering: 

These types of filters are used for this purpose- 

Band Reject Filters: 

It removes a band of frequencies about the origin of the Fourier transformer. 

Ideal Band reject Filter: 

An ideal band reject filter is given by the expression 
 
 

D(u,v)- the distance from the origin of the centered frequency rectangle. 

W- the width of the band 

Do- the radial center of the frequency rectangle. 

Butterworth Band reject Filter: 

 

 

 

 

Gaussian Band reject Filter: 

 

 

 
These filters are mostly used when the location of noise component in the frequency 

domain is known. Sinusoidal noise can be easily removed by using these kinds of filters 

because it shows two impulses that are mirror images of each other about the origin. Of 

the frequency transform. 
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Band pass Filter: 

The function of a band pass filter is opposite to that of a band reject filter It allows a specific 

frequency band of the image to be passed and blocks the rest of frequencies. The transfer 

function of a band pass filter can be obtained from a corresponding band reject filter with 

transfer function Hbr(u,v) by using the equation 

 

 

These filters cannot be applied directly on an image because it may remove too much details of 

an image but these are effective in isolating the effect of an image of selected frequency bands. 

Notch Filters: 

A notch filter rejects (or passes) frequencies in predefined neighborhoods about a center 

frequency. 

Due to the symmetry of the Fourier transform notch filters must appear in symmetric 

pairs about the origin. 

The transfer function of an ideal notch reject filter of radius D0 with centers a (u0 , v0) and 

by symmetry at (-u0 , v0) is 

Ideal, butterworth, Gaussian notch filters 
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Inverse Filtering: 

The simplest approach to restoration is direct inverse filtering where we complete an 

estimate    of the transform of the original image simply by dividing the transform of 

the degraded image G(u,v) by degradation function H(u,v) 

We know that 
 

Therefore 
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From the above equation we observe that we cannot recover the undegraded image exactly 

because N(u,v) is a random function whose Fourier transform is not known. 

One approach to get around the zero or small-value problem is to limit  the filter 

frequencies to values near the origin. 

We know that H(0,0) is equal to the average values of h(x,y). 

By Limiting the analysis to frequencies near the origin we reduse the probability of 

encountering zero values. 

Minimum mean Square Error (Wiener) filtering: 

The inverse filtering approach has poor performance. The wiener filtering approach uses 

the degradation function and statistical characteristics of noise into the restoration 

process. 

The objective is to find an estimate   of the uncorrupted image f such that the mean 

square error between them is minimized. 

The error measure is given by 
 

 

Where E{.} is the expected value of the argument. 

We assume that the noise and the image are uncorrelated one or the other has zero mean. 

The gray levels in the estimate are a linear function of the levels in the degraded image. 

Where H(u,v)= degradation function 

H*(u,v)=complex conjugate of H(u,v) 

| H(u,v)|2=H* (u,v) H(u,v) 

Sn(u,v)=|N(u,v)|2= power spectrum of the noise 

Sf(u,v)=|F(u,v)|2= power spectrum of the underrated image 
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The power spectrum of the undegraded image is rarely known. An approach used 

frequently when these quantities are not known or cannot be estimated then the 

expression used is 

 

Where K is a specified constant. 

Constrained least squares filtering: 

The wiener filter has a disadvantage that we need to know the power spectra of the 

undegraded image and noise. The constrained least square filtering requires only the 

knowledge of only the mean and variance of the noise. These parameters usually can be 

calculated from a given degraded image this is the advantage with this method. This 

method produces a optimal result. This method require the optimal criteria which is 

important we express the 

 
in vector-matrix form 

 

The optimality criteria for restoration is based on a measure of smoothness, such as the 

second derivative of an image (Laplacian). 

The minimum of a criterion function C defined as 
 

Subject to the constraint 
 

 

Where    is a euclidean vector norm    is estimate of the undegraded image. 

 is laplacian operator. 

The frequency domain solution to this optimization problem is given by 
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Where γ is a parameter that must be adjusted so that the constraint is satisfied. 

P(u,v) is the Fourier transform of the laplacian operator 
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UNIT-IV 

IMAGE SEGMENTATION 

Image segmentation is the division of an image into regions or categories, which 

correspond to different objects or parts of objects. Every pixel in an image is allocated to one of  

a number of these categories. 

A good segmentation is typically one in which: 
 

• pixels in the same category have similar grey scale of multivariate values and form a 

connected region, 

• neighboring pixels which are in different categories have dissimilar values. 
 

Segmentation is often the critical step in image analysis: the point at which we move 

from considering each pixel as a unit of observation to working with objects (or parts of objects) 

in the image, composed of many pixels. 

Image segmentation is the key behind image understanding. Image segmentation is 

considered as an important basic operation for meaningful analysis and interpretation of image 

acquired. 

It is a critical and essential component of an image analysis and/or pattern recognition 

system, and is one of the most difficult tasks in image processing, which determines the quality 

of the final segmentation. 

If segmentation is done well then all other stages in image analysis are made simpler. 

But, as we shall see, success is often only partial when automatic segmentation algorithms are 

used. However, manual intervention can usually overcome these problems, and by this stage the 

computer should already have done most of the work. 

Segmentation algorithms may either be applied to the images as originally recorded, or 

after the application of transformations and filters considered in chapters 2 and 3. After 

segmentation, methods of mathematical morphology can be used to improve the results. The 

segmentation results will be used to extract quantitative information from the images. 

There are three general approaches to segmentation, 
 

 Termed thresholding, 

 Edge-based methods and 

 Region-based methods. 
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• In thresholding, pixels are allocated to categories according to the range of values in which a 

pixel lies. Fig 4.1(a) shows boundaries which were obtained by thresholding the muscle fibers 

image. Pixels with values less than 128 have been placed in one category, and the rest have been 

placed in the other category. The boundaries between adjacent pixels in different categories has 

been superimposed in white on the original image. It can be seen that the threshold has 

successfully segmented the image into the two predominant fiber types. 

• In edge-based segmentation, an edge filter is applied to the image, pixels are classified as edge 

or non-edge depending on the filter output, and pixels which are not separated by an edge are 

allocated to the same category. Fig 4.1(b) shows the boundaries of connected regions after 

applying Prewitt’s filter (§3.4.2) and eliminating all non-border segments containing fewer than 

500 pixels. (More details will be given in §4.2.) 

• Finally, region-based segmentation algorithms operate iteratively by grouping together pixels 

which are neighbors and have similar values and splitting groups of pixels which are dissimilar 

in value. Fig 4.1(c) shows the boundaries produced by one such algorithm, based on the concept 

of watersheds, about which we will give more details in §4.3 

 

 
Note that none of the three methods illustrated in Fig 4.1 has been completely successful 

in segmenting the muscle fibers image by placing a boundary between every adjacent pair of 

fibers. Each method has distinctive faults. For example, in Fig 4.1(a) boundaries are well placed, 

but others are missing. In Fig 4.1(c), however, more boundaries are present, and they are smooth, 

but they are not always in exactly the right positions. 

The following three sections will consider these three approaches in more detail. 

Algorithms will be considered which can either be fully automatic or require some manual 

intervention. The key points of the chapter will be summarized in §4.4. 
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Fig.4.1 Boundaries produced by three segmentations of the muscle fibers images: (a) by 

thresholding, (b) connected regions after thresholding the output of Prewitt”s edge filter and 

removing small regions, (c) result produced by watershed algorithm on output from a variance 

filter with Gaussian weights (𝛔2 = 96). 

It is the prime area of research in computer vision. 

A number of image segmentation techniques are available, but there is no one single 

technique that is suitable to all the application. Researchers have extensively worked over this 

fundamental problem and proposed various methods for image segmentation. These methods can 

be broadly classified into seven groups: 

(1) Histogram thresholding, 
 

(2) Clustering (Fuzzy and Hard), 
 

(3) Region growing, region splitting and merging, 
 

(4) Discontinuity-based, 
 

(5) Physical model- based, 
 

(6) Fuzzy approaches, and 
 

(7) Neural network and GA (Genetic algorithm) based approaches. 
 

Discontinuity based segmentation is one of the widely used techniques for monochrome 

image segmentation. In discontinuity-based approach, the partitions or subdivision of an image is 

based on some abrupt changes in the intensity level of images. Here, we mainly interest in 

identification of isolated points, lined and edges in an image. 

The area of edge detection algorithms. The image segmentation based on discontinuity- 

based approach. Under this approach, we analyses the point detection, line detection and edge 

detection techniques. A number of operator which are based on first-order derivatives and 

second-order derivatives such as prewitt, sobel, roberts etc.. 
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THRESHOLDING: 

h(x) P p (x) P p (x)= 
 

Thresholding is the simplest and most commonly used method of segmentation. Given a 

single threshold, t, the pixel located at lattice position (i, j), with grayscale value fij , is allocated 

to category 1 if 
 

fij ≤ t. 
 

In many cases t is chosen manually by the scientist, by trying a range of values of t and 

seeing which one works best at identifying the objects of interest. Fig 4.2 shows some 

segmentations of the soil image Thresholds of 7, 10, 13, 20, 29 and 38 were chosen in Figs 4.2(a) 

to (f) respectively, to identify approximately 10, 20, 30, 40, 50 and 60% of the pixels as being 

pores. Fig 4.2(d), with a threshold of 20, looks best because most of the connected pore network 

evident. 
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Fig.4.2: six segmentations of the soil image, obtained using manually-selected thresholds 

of (a)7, (b) 10, (c) 13, (d) 20, (e) 29 and (f) 38. These correspond to approximately 10%, 

20%,….60%, respectively, of the image being displayed as black. 

Note that: 
 

• Although pixels in a single thresholded category will have similar values (either in the 

range 0 to t, or in the range (t + 1) to 255), they will not usually constitute a single connected 

component. This is not a problem in the soil image because the object (air) is not necessarily 

connected, either in the imaging plane or in three-dimensions. In other cases, thresholding would 

be followed by dividing the initial categories into sub-categories of connected regions. 

• More than one threshold can be used, in which case more than two categories are 

produced. 
 

• Thresholds can be chosen automatically. 
 

In §4.1.1 we will consider algorithms for choosing the threshold on the basis of the 

histogram of greyscale pixel values. In §4.1.2, manually- and automatically-selected classifiers 

for multivariate images will be considered. Finally, in §4.1.3, thresholding algorithms which 

make use of context (that is, values of neighbouring pixels as well as the histogram of pixel 

values) will be presented. 

HISTOGRAM-BASED THRESHOLDING 

We will denote the histogram of pixel values by h0, h1,...,hN , where hk specifies the 

number of pixels in an image with grey scale value k and N is the maximum pixel value 

(typically 255). Ridler and Calvard (1978) and Trussell (1979) proposed a simple algorithm for 

choosing a single threshold. We shall refer to it as the intermeans algorithm. First we will 

describe the algorithm in words, and then mathematically. 

Initially, a guess has to be made at a possible value for the threshold. From this, the mean 

values of pixels in the two categories produced using this threshold are calculated. The threshold 

is repositioned to lie exactly half way between the two means. Mean values are calculated again 
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and a new threshold is obtained, and so on until the threshold stops changing value. 

Mathematically, the algorithm can be specified as follows. 

1. Make an initial guess at t: for example, set it equal to the median pixel value, that is, 

the value for which 

 
 

where n2 is the number of pixels in the n × n image. 
 

 
2. Calculate the mean pixel value in each category. For values less than or equal to t, this 

is given by: 
 

 

Whereas, for values greater than t, it is given by: 

 

 
3. Re-estimate t as half-way between the two means, i.e. 
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where [ ] denotes ‘the integer part of’ the expression between the brackets. 
 

4. Repeat steps (2) and (3) until ‘t’ stops changing value between consecutive evaluations. 
 

Fig 4.3 shows the histogram of the soil image. From an initial value of t = 28 (the median pixel 

value), the algorithm changed t to 31, 32, and 33 on the first three iterations, and then t remained 

unchanged. The pixel means in the two categories are 15.4 and 52.3. Fig 4.4(a) shows the result 

of using this threshold. Note that this value of t is considerably higher than the threshold value of 

20 which we favored in the manual approach. 

The inter means algorithm has a tendency to find a threshold which divides the 

histogram in two, so that there are approximately equal numbers of pixels in the two categories. 

In many applications, such as the soil image, this is not appropriate. One way to overcome this 

drawback is to modify the algorithm as follows. 

Consider a distribution which is a mixture of two Gaussian distributions. Therefore, in 

the absence of sampling variability, the histogram is given by: 

 

 
Here, p1 and p2 are proportions (such that p1 + p2 = 1) and φl(k) denotes the probability density 

of a Gaussian distribution, that is 
 

 

where µl and σ2 l are the mean and variance of pixel values in category l. The best classification 

criterion, i.e. the one which misclassifies the least number of pixels, allocates pixels with value k 

to category 1 if p 
 

and otherwise classifies them as 2. After substituting for φ and taking logs, the inequality 

becomes 
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The left side of the inequality is a quadratic function in k. Let A, B and C denote the 

three terms in curly brackets, respectively. Then the criterion for allocating pixels with value k to 

category 1 is: 
 

 
There are three cases to consider: 

(a) If A = 0 (i.e. σ1
2 = σ2 

2 ), the criterion simplifies to one of allocating pixels with value k to 

category 1 if 
 

(If, in addition, p1 = p2 and µ1 < µ2, the criterion becomes k ≤ 1/ 2 {µ1 + µ2}. Note that this is the 

intermeans criterion, which implicitly assumes that the two categories are of equal size.) 

(b) If B < AC, then the quadratic function has no real roots, and all pixels are classified as 1 if A 

< 0 (i.e. σ1 
2 > σ2 

2), or as 2 if A > 0 

(c) Otherwise, denote the roots t1 and t2 , where t1 ≤ t2 and 
 

 
The criteria for category 1 are 

 

 
In practice, cases (a) and (b) occur infrequently, and if µ1 < µ2 the rule simplifies to  the 

threshold: 

 
 

 

Kittler and Illingworth (1986) proposed an iterative minimum-error algorithm, which is based on 

this threshold and can be regarded as a generalization of the intermeans algorithm. Again, we 

will describe the algorithm in words, and then mathematically. 

From an initial guess at the threshold, the proportions, means and variances of pixel values in the 

two categories are calculated. The threshold is repositioned according to the above criterion, and 

proportions, means and variances are recalculated. These steps are repeated until there are no 

changes in values between iterations. 
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Mathematically: 

1. Make an initial guess at a value for t. 

2. Estimate p1, µ1 and σ1 
2 for pixels with values less than or equal to t, by 

 

Similarly, estimate p2, µ2 and σ2 
2 for pixels in the range t + 1 to N. 

 
3. Re-estimate t by 

 
 

 
where A, B, C and [ ] have already been defined. 

 

4. Repeat steps (2) and (3) until t converges to a stable value. 

 

 

When applied to the soil image, the algorithm converged in 4 iterations to t = 24. Fig 

4.4(b) shows the result, which is more satisfactory than that produced by the intermeans 
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algorithm because it has allowed for a smaller proportion of air pixels (p1 = 0.45, as compared 
with p2 = 0.55). The algorithm has also taken account of the air pixels being less variable  in 

value than those for the soil matrix (σ1 
2 = 30, whereas σ2 

2 = 186). This is in accord with the left- 
most peak in the histogram plot (Fig 4.3) being quite narrow. 

EDGE-BASED SEGMENTATION 

As we have seen, the results of threshold-based segmentation are usually less than 

perfect. Often, a scientist will have to make changes to the results of automatic segmentation. 

One simple way of doing this is by using a computer mouse to control a screen cursor and draw 

boundary lines between regions. Fig 4.10(a) shows the boundaries obtained by thresholding the 

muscle fibres image (as already displayed in Fig 4.1(a)), superimposed on the output from 

Prewitt’s edge filter (§3.4.2), with the contrast stretched so that values between 0 and 5 are 

displayed as shades of grey ranging from white to black and values exceeding 5 are all displayed 

as black. This display can be used as an aid to determine where extra boundaries need to be 

inserted to fully segment all muscle fibres. Fig 4.10(b) shows the result after manually adding 71 

straight lines. 
 

Algorithms are available for semi-automatically drawing edges, whereby the scientist’s 

rough lines are smoothed and perturbed to maximise some criterion of match with the image 

(see, for example, Samadani and Han, 1993). Alternatively, edge finding can be made fully 



 

80  

automatic, although not necessarily fully successful. Fig 4.11(a) shows the result of applying 

Prewitt’s edge filter to the muscle fibre image. In this display, the filter output has been 

thresholded at a value of 5: all pixels exceeding 5 are labelled as edge pixels and displayed as 

black. Connected chains of edge pixels divide the image into regions. Segmentation can be 

achieved by allocating to a single category all non-edge pixels which are not separated by an 

edge. Rosenfeld and Pfaltz (1966) gave an efficient algorithm for doing this for 4- and 8- 

connected regions, termed a connected components algorithm. We will describe this algorithm in 

words, and then mathematically. 

The algorithm operates on a raster scan, in which each pixel is visited in turn, starting at the top- 

left corner of the image and scanning along each row, finishing at the bottom-right corner. For 

each non-edge pixel, (i, j), the following conditions are checked. If its already visited neighbors 

— (i − 1, j) and (i, j − 1) in the 4-connected case, also (i − 1, j − 1) and (i − 1, j + 1) in the 8- 

connected case — are all edge pixels, then a new category is created and (i, j) is allocated to it. 

Alternatively, if all its non-edge neighbors are in a single category, then (i, j) is also placed in  

that category. The final possibility is that neighbors belong to two or more categories, in which 

case (i, j) is allocated to one of them and a note is kept that these categories are connected and 

therefore should from then on be considered as a single category. More formally, for the simpler 

case of 4-connected regions: 

• Initialize the count of the number of categories by setting K = 0. 
 

• Consider each pixel (i, j) in turn in a raster scan, proceeding row by row (i = 1,...,n), and for 

each value of i taking j = 1,...,n. 
 

• One of four possibilities apply to pixel (i, j): 
 

1. If (i, j) is an edge pixel then nothing needs to be done. 

2. If both previously-visited neighbours, (i − 1, j) and (i, j − 1), are edge pixels, then a new 

category has to be created for (i, j): 
 
 

 
where the entries in h1,...,hK are used to keep track of which categories are equivalent, and gij 

records the category label for pixel (i, j). 

3. If just one of the two neighbours is an edge pixel, then (i, j) is assigned the same label as the 

other one: 
 



 

81  

4. The final possibility is that neither neighbor is an edge pixel, in which case (i, j) is given the 

same label as one of them: 
 

and if the neighbors have labels which have not been marked as equivalent, i.e. hgi−1,j 6= 

hgi,j−1 , then this needs to be done (because they are connected at pixel (i, j)). The 

equivalence is recorded by changing the entries in h1,...,hK, as follows: – Set l1 = min(hgi−1,j , 

hgi,j−1 ) and l2 = max(hgi−1,j , hgi,j−1 ). – For each value of k from 1 to K, if hk = l2 then hk 

→ l1. 

• Finally, after all the pixels have been considered, the array of labels is revised, taking into 

account which categories have been marked for amalgamation: 

gij → hgij for i, j = 1, . . . , n 

 
After application of the labeling algorithm, superfluous edge pixels — that is, those 

which do not separate classes — can be removed: any edge-pixel which has neighbors only of 

one category is assigned to that category. Fig 4.11(b) shows the result of applying the labeling 

algorithm with edges as shown in Fig 4.11(a), and removing superfluous edge pixels. The 

white boundaries have been superimposed on the original image. 

Similarly, small segments (say less than 500 pixels in size) which do not touch the 

borders of the image can be removed, leading to the previously displayed Fig 4.1(b). The 

segmentation has done better than simple thresholding, but has failed to separate all fibers 

because of gaps in output from Prewitt’s edge filter. Martello (1976), among others, has 

proposed algorithms for bridging these gaps. 
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 REGION-BASED SEGMENTATION 

 
Segmentation may be regarded as spatial clustering: 

 
• clustering in the sense that pixels with similar values are grouped together, and 

• spatial in that pixels in the same category also form a single connected component. 

 
Clustering algorithms may be agglomerative, divisive or iterative (see, for example, 

Gordon, 1981). Region-based methods can be similarly categorized into: 

 
• those which merge pixels, 

 

• those which split the image into regions, and 
 

• those which both split-and-merge in an iterative search scheme 
 

The distinction between edge-based and region-based methods is a little arbitrary. For 

example, in §4.2 one of the algorithms we considered involved placing all neighboring non-edge 

pixels in the same category. In essence, this is a merging algorithm. 

Seeded region growing is a semi-automatic method of the merge type. We will explain it 

by way of an example. Fig 4.13(a) shows a set of seeds, white discs of radius 3, which have been 
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placed inside all the muscle fibres, using an on-screen cursor controlled by a computer mouse. 

Fig 4.13(b) shows again the output from Prewitt’s edge filter. Superimposed on it in  white are 

the seeds and the boundaries of a segmentation produced by a form of watershed algorithm. The 

boundaries are also shown superimposed on the original muscle fibres image in Fig 4.13(c). The 

watershed algorithm operates as follows (we will explain the name later). 

For each of a sequence of increasing values of a threshold, all pixels with edge strength 

less than this threshold which form a connected region with one of the seeds are allocated to the 

corresponding fibre. When a threshold is reached for which two seeds become connected, the 

pixels are used to label the boundary. A mathematical representation of the algorithm is too 

complicated to be given here. Instead, we refer the reader to Vincent and Soille (1991) for more 

details and an efficient algorithm. Meyer and Beucher (1990) also consider the watershed 

algorithm, and added some refinements to the method. 

Note that: 
 

• The use of discs of radius 3 pixels, rather than single points, as seeds make the watershed 

results less sensitive to fluctuations in Prewitt’s filter output in the middle of fibres. 
 

• The results produced by this semi-automatic segmentation algorithm are almost as good as 

those shown in Fig 4.10(b), but the effort required in positioning seeds inside muscle fibres is far 

less than that required to draw boundaries. 

• Adams and Bischof (1994) present a similar seeded region growing algorithm, but based 

directly on the image greyscale, not on the output from an edge filter. 
 

The watershed algorithm, in its standard use, is fully automatic. Again, we will demonstrate this 

by illustration. Fig 4.14 shows the output produced by a variance filter (§3.4.1) with Gaussian 

weights (σ2 = 96) applied to the muscle fibers image after histogram-equalization (as shown in 

Fig 2.7(d)). The white seeds overlie all the local minima of the filter output, that is, pixels whose 

neighbors all have larger values and so are shaded lighter. Note that it is necessary to use a large 

value of σ2 to ensure that the filter output does not have many more local minima. The 

boundaries produced by the watershed algorithm have been added to Fig 4.14. An intuitive way 

of viewing the watershed algorithm is by considering the output from the variance filter as an 

elevation map: light areas are high ridges and dark areas are valleys. Each local minimum can be 

thought of as the point to which any water falling on the region drains, and the segments are the 

catchments for them. Hence, the boundaries, or watersheds, lie along tops of ridges. The 

previously mentioned Fig 4.1(c) shows this segmentation superimposed on the original image. 
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Fig.4.13: Manual segmentation of muscle fibres image by use of watersheds algorithm (a) 

manually positioned ‘seeds’ in centers of all fibres, (b) output from Prewitt’s edge filter 

together with watershed boundaries, (c) watershed boundaries superimposed on the image. 

 

Figure 4.14: Output of variance filter with Gaussian weights (σ2 = 96) applied to muscle 

fibres image, together with seeds indicating all local minima and boundaries produced by 

watershed algorithm. 
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There are very many other region-based algorithms, but most of them are quite 

complicated. In this section we will consider just one more, namely an elegant split-and- 

merge algorithm proposed by Horowitz and Pavlidis (1976). We will present it in a slightly 

modified form to segment the log-transformed SAR image (Fig 2.6), basing our segmentation 

decisions on variances, whereas Horowitz and Pavlidis based theirs on the range of pixel 

values. The algorithm operates in two stages, and requires a limit to be specified for the 

maximum variance in pixel values in a region. 

 
The first stage is the splitting one. Initially, the variance of the whole image is 

calculated. If this variance exceeds the specified limit, then the image is subdivided into four 

quadrants. Similarly, if the variance in any of these four quadrants exceeds the limit it is 

further subdivided into four. This continues until the whole image consists of a set of squares 

of varying sizes, all of which have variances below the limit. (Note that the algorithm must be 

capable of achieving this because at the finest resolution of each square consisting of a single 

pixel the variances are taken to be zero.) 

 
Fig 4.15(a) shows the resulting boundaries in white, superimposed on the log- 

transformed SAR image, with the variance limit set at 0.60. Note that: 

 
• Squares are smaller in non-uniform parts of the image. 

 
Figure 4.15: Region-growing segmentation of log-transformed SAR image: (a) division of 

image into squares with variance less than 0.60, obtained as first step in algorithm, (b) final 

segmentation, after amalgamation of squares, subject to variance limit of 0.60. 
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• The variance limit was set to 0.60, rather than to the speckle variance value of 0.41 (Horgan, 

1994), because in the latter case the resulting regions were very small. 

 
• The algorithm requires the image dimension, n, to be a power of 2. Therefore, the 250 × 250 

SAR image was filled out to 256 × 256 by adding borders of width 3. 

 
The second stage of the algorithm, the merging one, involves amalgamating squares 

which have a common edge, provided that by so doing the variance of the new region does 

not exceed the limit. Once all amalgamations have been completed, the result is a 

segmentation in which every region has a variance less than the set limit. However, although 

the result of the first stage in the algorithm is unique, that from the second is not — it depends 

on the order of which squares are considered. 

 
Fig 4.15(b) shows the boundaries produced by the algorithm, superimposed on the SAR 

image. Dark and light fields appear to have been successfully distinguished between, although 

the boundaries are rough and retain some of the artefacts of the squares in Fig 4.15(a). 

 
Pavlidis and Liow (1990) proposed overcoming the deficiencies in the boundaries 

produced by the Horowitz and Pavlidis algorthm by combining the results with those from an 

edge-based segmentation. Many other ideas for region-based segmentation have been 

proposed (see, for example, the review of Haralick and Shapiro, 1985), and it is still an active 

area of research. 

 
One possibility for improving segmentation results is to use an algorithm which over- 

segments an image, and then apply a rule for amalgamating these regions. This requires ‘high- 

level’ knowledge, which falls into the domain of artificial intelligence. (All that we have 

considered in this chapter may be termed ‘low-level’.) For applications of these ideas in the 

area of remote sensing, see Tailor, Cross, Hogg and Mason (1986) and Ton, Sticklen and Jain 

(1991). It is possible that such domain-specific knowledge could be used to improve the 

automatic segmentations of the SAR and muscle fibres images, for example by constraining 

boundaries to be straight in the SAR image and by looking only for convex regions of 

specified size for the muscle fibres. 

 
We briefly mention some other, more-complex techniques which can be used to segment 

images. 

 
• The Hough transform (see, for example, Leavers, 1992) is a powerful technique for finding 

straight lines, and other parametrized shapes, in images. 
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n 

• Boundaries can be constrained to be smooth by employing roughness penalties such as 

bending energies. The approach of varying a boundary until some such criterion is optimized 

is known as the fitting of snakes (Kass, Witkin and Terzopoulos 1988). 

 
• Models of expected shapes can be represented as templates and matched to images. Either 

the templates can be rigid and the mapping can be flexible (for example, the thinplate spline  

of Bookstein, 1989), or the template itself can be flexible, as in the approach of Amit, 

Grenander and Piccioni (1991). 

 
• Images can be broken down into fundamental shapes, in a way analogous to the 

decomposition of a sentence into individual words, using syntactic methods (Fu, 1974). 

 
 Basic Formulation 

Let R represent the entire image region. We want to partition R into n sub regions, R1 , R2 , . . 

., Rn , such that: 

 

(a) i1 
Ri  R 

(b) Ri is a connected region for i=1, 2, . . , n 

( C) Ri ∩ Rj =  for all i and j, i = j 

(d) P(Ri) = TRUE  for i=1,2, . . .n 

(e) P(Ri  Rj) = FALSE  for  i   j 

 
Where P(Ri) is a logic predicate over the points in set Ri and  is the null set. 

The symbols  and  represent set union and intersection, respectively. 

The two regions Ri and Rj are said to be adjacent if their union forms a connected set. 

 
Condition (a) indicates that the segmentation must be complete; that is every pixel must 

be in a region. 

Condition (b) requires that points in a region be connected in some predefined sense. 

Condition (c) indicates that the regions must be disjoint. 

Condition (d) deals with the properties that must be satisfied by the pixels in a 

segmented region. For ex: P(Ri) = TRUE if all pixels in Ri have the same intensity level. 

Finally, condition(e) indicates that two adjacent regions Ri and Rj must be different in the 

sense of predicate P. 

 
 Point Detection 

A point is the most basic type of discontinuity in a digital image. The most common approach 

to finding discontinuities is to run an (n n) mask over each point in the image. The mask is as 

shown in figure 2. 
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Figure 2. A mask for point detection 

 
The point is detected at a location (x, y) in an image where the mask is centered. If the 

corresponding value of R such that 

 
Where R is the response of the mask at any point in the image and T is non-negative 

threshold value. It means that isolated point is detected at the corresponding value (x, y). This 

formulation serves to measures the weighted differences between the center point and its 

neighbors since the gray level of an isolated point will be very different from that of its 

neighbors [ ]. The result of point detection mask is as shown in figure 3 

 

Figure 3. (a) Gray-scale image with a nearly invisible isolated black point (b) Image showing 

the detected point 

 
 Line Detection 

Line detection is the next level of complexity in the direction of image discontinuity. For any 

point in the image, a response can be calculated that will show which direction the point of a 

line is most associated with. For line detection, we use two masks, and, mask. Then, we have 

 
It means that the corresponding points is more likely to be associated with a line in the 

direction of the mask i. 
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Figure 4. Line Detector masks in (a) Horizontal direction (b) 45° direction (c) Vertical 

direction (d) - 45° direction The greatest response calculation from these matrices will yield the 

direction of the given pixel []. The result of line detection mask is as shown in figure 5 
 

 
Figure 5. (a) Original Image (b) result showing with horizontal detector (c) with 45° 

detector (d) with vertical detector (e) with -45° detector 

With the help of lines detector masks, we can detect the lines in a specified direction. For 

example, we are interesting in finding all the lines that are one pixel thick, oriented at -45°. For 

that, we take a digitized (binary portion of a wire-bond mask for an electronics circuit. The 

results are shown as in figure 6. 
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           Edge detection 
 

Since isolated points and lines of unitary pixel thickness are infrequent in most practical 

application, edge detection is the most common approach in gray level discontinuity 

segmentation. An edge is a boundary between two regions having distinct intensity level. It is 

very useful in detecting of discontinuity in an image. When the image changes from dark to 

white or vice-versa. The changes of intensity, first-order derivative and second-order derivative 

are shown in figure 7. 
 

Figure 7. (a) Intensity profile (b) First-order derivatives (c) Second-order derivatives 
 

 First-order derivatives. First-order derivatives responds whenever there is 

discontinuity in intensity level. It is positive at the leading edge and negative at the trailing edge. 

Suppose we have an image f(x, y) and gradient operator f. 
 

Gxf = Gy
 f /  =   

f / y 






------------------(4) strength of  f is given by 

   


 f = magnitude of (  f) 

 
= 

 

   ‖ Gx ‖  +  ‖ Gy ‖ ---------------- (5) It gives the strength of edge at location (x,y) 
 

Direction of  f is given by 

 Gx 
 (x,y)  =  tan -1  

Gy 
(6) 

 


Where  (x,y) gives the direction of  f . 

Gx2  Gy2 
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Figure 8. (a) Original Image (b) ‖𝐺𝑥‖component of the gradient along x-direction (c) 

‖ Gy ‖component of the gradient along y-direction (d) Gradient Image ‖𝐺𝑥‖+ ‖𝐺𝑦‖ 

There is several ways to calculate the image gradient: 

 
 Prewitt Edge operator 

 

 

Figure 9. Masks used for Prewitt Edge operator 
 

The mask finds the horizontal edges is equivalent to gradient in the vertical direction and 

the mask compute the vertical edges is equivalent to gradient in the horizontal direction. Using 

these two masks passing to the intensity image, we can find out and component at different 

location in an image. So, we can find out the strength and direction of edge at that particular 

location (x, y). 

        Sobel Edge operator 

 

 

Figure 10. Masks used for Sobel Edge operator 
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It gives the averaging effect over an image. It considers the effect due to the spurious 

noise in the image. It is preferable over prewitt edge operator because it gives the smoothing 

effect and by which we can reduce spurious edge which are generated because of noise present in 

the image. 

       Second-order derivatives 
 

It is positive at the darker side and negative at the white side. It is very sensitive to noise 

present in an image. That’s why it is not used for edge detection. But, it is very useful for 

extracting some secondary information i.e. we can find out whether the point lies on the darker 

side or the white side. 

Zero-crossing: It is useful to identify the exact location of the edge where there is gradual 

transition of intensity from dark to bright region and vice-versa. There are several second-order 

derivative operators: 3.3.2.1. Laplacian operator. The Laplacian mask 

 Laplacian operator. The Laplacian mask is given by: 

 

Figure 11. Masks used for Laplacian operator 
 

 
 

 2(f) = 
2 f 

 2 
+

 

2 f 

y2 

 
------------(7) 

 

 
 

If we consider the diagonal elements: 
 
 

 
Figure 12. Masks used for Laplacian operator using 8-connectivity 
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It is not used for edge detection because it is very sensitive to noise and also leads to 

double edge. But, it is very useful for extracting secondary information. To reduce the effect of 

noise, first image will be smooth using the Gaussian operator and then it is operated  by 

Laplacian operator. These two operations together is called LoG (Laplacian of Gaussian) 

operator. 

 LoG operator 
 

The LoG mask is given by 
 

 

Figure 13. Masks used for LoG operator 
 

 
 Canny operator 

 

It is very important method to find edges by isolating noise from the image before find 

edges of images, without affecting the features of the edges in the image and then applying the 

tendency to find the edges in the image and the critical value for threshold. 

SUMMARY 
 

The key points about image segmentation are 
 

• Segmentation is the allocation of every pixel in an image to one of a number of 

categories, which correspond to objects or parts of objects. Commonly, pixels in a single 

category should: 
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_have similar pixel values, 
 

– form a connected region in the image, 
 

– be dissimilar to neighbouring pixels in other categories. 

 

 

• Segmentation algorithms may either be applied to the original images, or after the 

application of transformations and filters (considered in chapters 2 and 3). 

• Three general approaches to segmentation are: 
 

– thresholding, 
 

– edge-based methods, 
 

– region-based methods. 
 

• Methods within each approach may be further divided into those which: 
 

– require manual intervention, or 
 

– are fully automatic. 
 

A single threshold, t, operates by allocating pixel (i, j) to category 1 if fij ≤ t, and 

otherwise putting it in category 2. Thresholds may be obtained by: 
 

• manual choice, or 

• applying an algorithm such as intermeans or minimum-error to the histogram of pixel 

values. 

 
– Intermeans positions t half-way between the means in the two categories. 

– Minimum-error chooses t to minimize the total number of misclassifications on the 

assumption that pixel values in each category are Normally distributed. 

• Thresholding methods may also be applied to multivariate images. In this case, two 

possibilities are: 

– manually selecting a training set of pixels which are representative of the different 

categories, and then using linear discrimination, 

– k-means clustering, in which the categories are selected automatically from the data. 

• The context of a pixel, that is the values of neighbouring pixels, may also be used to modify 

the threshold value in the classification process. We considered three methods: 

– restricting the histogram to those pixels which have similarly valued neighbours, 

– post-classification smoothing, 



 

95  

– using Bayesian image restoration methods, such as the iterated conditional modes 

(ICM) algorithm. 

 
In edge-based segmentation, all pixels are initially labelled as either being on an edge or not, 

then non-edge pixels which form connected regions are allocated to the same category. 

Edge labelling may be: 

• manual, by using a computer mouse to control a screen cursor and draw boundary 

lines between regions, 

• automatic, by using an edge-detection filter. Edges can be located either: 

 
– where output from a filter such as Prewitt’s exceeds a threshold, or 

– at zero crossings from a Laplacian-of-Gaussian filter. 

 
Region-based algorithms act by grouping neighbouring pixels which have similar values and 

splitting groups of pixels which are heterogeneous in value. Three methods were 

considered: 

 
• Regions may be grown from manually-positioned ‘seed’ points, for example, by 

applying a watershed algorithm to output from Prewitt’s filter. 

 
• The watershed algorithm may also be run fully automatically, for example, by 

using local minima from a variance filter as seed points. 

 
• One split-and-merge algorithm finds a partition of an image such that the variance 

in pixel values within every segment is below a specified threshold, but no two 

adjacent segments can be amalgamated without violating the threshold. 

 
Finally, the results from automatic segmentation can be improved by: 

• using methods of mathematical morphology (chapter 4 of second part). 

• using domain-specific knowledge, which is beyond the scope of this syllabus. 
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UNIT-V        

IMAGE COMPRESSION 

Definition: Image compression deals with reducing the amount of data required to represent a 

digital image by removing of redundant data. 

Images can be represented in digital format in many ways. Encoding the contents of a 

2-D image in a raw bitmap (raster) format is usually not economical and may result in very 

large files. Since raw image representations usually require a large amount of storage space 

(and proportionally long transmission times in the case of file uploads/ downloads), most 

image file formats employ some type of compression. The need to save storage space and 

shorten transmission time, as well as the human visual system tolerance to a modest amount of 

loss, have been the driving factors behind image compression techniques. 

Goal of image compression: The goal of image compression is to reduce the 

amount of data required to represent a digital image. 
 

Data  Information: 

 Data and information are not synonymous terms!

 Data is the means by which information is conveyed.

 Data compression aims to reduce the amount of data required to represent a given 

quality of information while preserving as much information as possible.

 The same amount of information can be represented by various amount of data. 

Ex1: You have an extra class after completion of 3.50 p.m

Ex2: Extra class have been scheduled after 7th hour for you. 

Ex3: After 3.50 p.m you should attended extra class. 
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Definition of compression ratio: 
 

 

 

Definitions of Data Redundancy: 
 

Coding redundancy: 

 Code: a list of symbols (letters, numbers, bits etc.,)

 Code word: a sequence of symbol used to represent a piece of information or an event 

(e.g., gray levels).

 Code word length: number of symbols in each code word.
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COMPRESSION METHODS OF IMAGES: 
 

Compression methods can be lossy, 
 

when a tolerable degree of deterioration in the visual quality of the resulting image is 

acceptable, 

or lossless, 
 

when the image is encoded in its full quality. The overall results of the compression 

process, both in terms of storage savings – usually expressed numerically in terms of 

compression ratio (CR) or bits per pixel (bpp) – as well as resulting quality loss (for the case 

of lossy techniques) may vary depending on the technique, format, options (such as the 

quality setting for JPEG), and the image contents. 

As a general guideline, lossy compression should be used for general purpose 

photographic images. 

whereas lossless compression should be preferred when dealing with line art, 

technical drawings, cartoons, etc. or images in which no loss of detail may be tolerable (most 

notably, space images and medical images). 

 

 

 

Fundamentals of visual data compression 

The general problem of image compression is to reduce the amount of data required to 

represent a digital image or video and the underlying basis of the reduction process is the 

removal of redundant data. Mathematically, visual data compression typically involves 
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transforming (encoding) a 2-D pixel array into a statistically uncorrelated data set. This 

transformation is applied prior to storage or transmission. At some later time, the compressed 

image is decompressed to reconstruct the original image information (preserving or lossless 

techniques) or an approximation of it (lossy techniques). 

 

 
 

Redundancy 

Data compression is the process of reducing the amount of data required to represent a given 

quantity of information. Different amounts of data might be used to communicate the same 

amount of information. If the same information can be represented using different amounts of 

data, it is reasonable to believe that the representation that requires more data contains what is 

technically called data redundancy. 

 

Image   compression   and   coding    techniques    explore    three    types    of    

redundancies: coding redundancy, interpixel (spatial) redundancy, 

and psychovisual redundancy. The way each of them is explored is briefly described below. 

 

 Coding redundancy: consists in using variable-length codewords selected as to match the 

statistics of the original source, in this case, the image itself or a processed version of its pixel 

values. This type of coding is always reversible and usually implemented using look-up 

tables (LUTs). Examples of image coding schemes that explore coding redundancy are the 

Huffman codes and the arithmetic coding technique.

 Interpixel redundancy: this type of redundancy – sometimes called spatial redundancy, 

interframe redundancy, or geometric redundancy – exploits the fact that an image very often 

contains strongly correlated pixels, in other words, large regions whose pixel values are the 

same or almost the same. This redundancy can be explored in several ways, one of which is 

by predicting a pixel value based on the values of its neighboring pixels. In order to do so, the 

original 2-D array of pixels is usually mapped into a different format, e.g., an array of 

differences between adjacent pixels. If the original image pixels can be reconstructed from 

the transformed data set the mapping is said to be reversible. Examples of compression 

techniques that explore the interpixel redundancy include: Constant Area Coding (CAC), (1- 

D or 2-D) Run-Length Encoding (RLE) techniques, and many predictive coding algorithms 

such as Differential Pulse Code Modulation (DPCM).

 

 Psycho visual redundancy: many experiments on the psychophysical aspects of 

human vision have proven that the human eye does not respond with equal sensitivity to all 

incoming visual information; some pieces of information are more important than others. The 

knowledge of which particular types of information are more or less relevant to the final 

human user have led to image and video compression techniques that aim at eliminating or 

reducing any amount of data that is psycho visually redundant. The end result of applying 

these techniques is a compressed image file, whose size and quality are smaller than the 

original information, but whose resulting quality is still acceptable for the application at hand. 

 

The  loss  of  quality  that  ensues  as  a  byproduct  of  such   techniques   is   frequently 

called quantization, as to indicate that a wider range of input values is normally mapped into 

a narrower range of output values thorough an irreversible process. In order to establish the 

nature and extent of information loss, different fidelity criteria (some objective such as root 
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mean square (RMS) error, some subjective, such as pair wise comparison of two images 

encoded with different quality settings) can be used. Most of the image coding algorithms in 

use today exploit this type of redundancy, such as the Discrete Cosine Transform (DCT)- 

based algorithm at the heart of the JPEG encoding standard. 

 
IMAGE COMPRESSION AND CODING MODELS 

 

Figure 1 shows a general image compression model. It consists of a source encoder, a 

channel encoder, the storage or transmission media (also referred to as channel ), a channel 

decoder, and a source decoder. The source encoder reduces or eliminates any redundancies in 

the input image, which usually leads to bit savings. Source encoding techniques are the 

primary focus of this discussion. The channel encoder increase noise immunity of source 

encoder’s output, usually adding extra bits to achieve its goals. If the channel is noise-free, 

the channel encoder and decoder may be omitted. At the receiver’s side, the channel and 

source decoder perform the opposite functions and ultimately recover (an approximation of) 

the original image. 

 

 

 
Figure 2 shows the source encoder in further detail. Its main components are: 

 

 Mapper: transforms the input data into a (usually nonvisual) format designed to 

reduce interpixel redundancies in the input image. This operation is generally 

reversible and may or may not directly reduce the amount of data required to 

represent the image. 

 

 
 

 Quantizer: reduces the accuracy of the mapper’s output in accordance with some pre- 

established fidelity criterion. Reduces the psychovisual redundancies of the input 

image. This operation is not reversible and must be omitted if lossless compression is 

desired. 

 

 
 

 Symbol (entropy) encoder: creates a fixed- or variable-length code to represent the 

quantizer’s output and maps the output in accordance with the code. In most cases, a 

variable-length code is used. This operation is reversible. 

 
 

Error-free compression 

 

Error-free compression techniques usually rely on entropy-based encoding algorithms. The 

concept of entropy is mathematically described in equation (1): 

 

where: 

 

a j is a symbol produced by the information source 

 

P ( a j ) is the probability of that symbol 
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J is the total number of different symbols 

 

H ( z ) is the entropy of the source. 

 

The concept of entropy provides an upper bound on how much compression can be achieved, 

given the probability distribution of the source. In other words, it establishes a theoretical 

limit on the amount of lossless compression that can be achieved using entropy encoding 

techniques alone. 

 

 

 
Variable Length Coding (VLC) 

 

Most entropy-based encoding techniques rely on assigning variable-length codewords to each 

symbol, whereas the most likely symbols are assigned shorter codewords. In the case of 

image coding, the symbols may be raw pixel values or the numerical values obtained at the 

output of the mapper stage (e.g., differences between consecutive pixels, run-lengths, etc.). 

The most popular entropy-based encoding technique is the Huffman code. It provides the 

least amount of information units (bits) per source symbol. It is described in more detail in a 

separate short article. 

 

Run-length encoding (RLE) 

 

RLE is one of the simplest data compression techniques. It consists of replacing a sequence 

(run) of identical symbols by a pair containing the symbol and the run length. It is used as the 

primary compression technique in the 1-D CCITT Group 3 fax standard and in conjunction 

with other techniques in the JPEG image compression standard (described in a separate short 

article). 

 

Differential coding 

 

Differential coding techniques explore the interpixel redundancy in digital images. The basic 

idea consists of applying a simple difference operator to neighboring pixels to calculate a 

difference image, whose values are likely to follow within a much narrower range than the 

original gray-level range. As a consequence of this narrower distribution – and consequently 

reduced entropy – Huffman coding or other VLC schemes will produce shorter codewords  

for the difference image. 

 

 
Predictive coding 

 

Predictive coding techniques constitute another example of exploration of interpixel 

redundancy, in which the basic idea is to encode only the new information in each pixel. This 

new information is usually defined as the difference between the actual and the predicted 

value of that pixel. 

 

Figure 3 shows the main blocks of a lossless predictive encoder. The key component is the 

predictor, whose function is to generate an estimated (predicted) value for each pixel from the 

input image based on previous pixel values. The predictor’s output is rounded to the nearest 

integer and compared with the actual pixel value: the difference between the two – 
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called prediction error – is then encoded by a VLC encoder. Since prediction errors are likely 

to be smaller than the original pixel values, the VLC encoder will likely generate shorter 

codewords. 

 

There are several local, global, and adaptive prediction algorithms in the literature. In most 

cases, the predicted pixel value is a linear combination of previous pixels. 

 

Dictionary-based coding 

 

Dictionary-based coding techniques are based on the idea of incrementally building a 

dictionary (table) while receiving the data. Unlike VLC techniques, dictionary-based 

techniques use fixed-length codewords to represent variable-length strings of symbols that 

commonly occur together. Consequently, there is no need to calculate, store, or transmit the 

probability distribution of the source, which makes these algorithms extremely convenient 

and   popular.   The   best-known   variant   of   dictionary-based   coding   algorithms   is    

the LZW (Lempel-Ziv-Welch) encoding scheme, used in popular multimedia file formats 

such as GIF, TIFF, and PDF. 

 

 
 

Lossy compression 

 

Lossy compression techniques deliberately introduce a certain amount of distortion to the 

encoded image, exploring the psychovisual redundancies of the original image. These 

techniques must find an appropriate balance between the amount of error (loss) and the 

resulting bit savings. 

 

Quantization 

 

The quantization stage is at the core of any lossy image encoding algorithm. Quantization, in 

at the encoder side, means partitioning of the input data range into a smaller set of values. 

There are two main types of quantizers: scalar quantizers and vector quantizers. A scalar 

quantizer partitions the domain of input values into a smaller number of intervals. If the 

output intervals are equally spaced, which is the simplest way  to  do  it,  the  process  is 

called uniform scalar quantization; otherwise, for reasons usually related to minimization of 

total distortion, it is called nonuniform scalar quantization. One of the most popular 

nonuniform quantizers is the Lloyd-Max quantizer. Vector quantization (VQ) techniques 

extend the basic principles of scalar quantization to multiple dimensions. Because of its fast 

lookup capabilities at the decoder side, VQ-based coding schemes are particularly attractive 

to multimedia applications. 

 

 

 

 

Transform coding 

 

The techniques discussed so  far  work  directly  on  the  pixel  values  and  are  usually  

called spatial domain techniques. Transform coding techniques use a reversible, linear 

mathematical transform to map the pixel values onto a set of coefficients, which are then 
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quantized and encoded. The key factor behind the success of transform-based coding  

schemes many of the resulting coefficients for most natural images have small magnitudes 

and can be quantized (or discarded altogether) without causing significant distortion in the 

decoded image. Different mathematical transforms, such as Fourier (DFT), Walsh-Hadamard 

(WHT), and Karhunen-Loeve (KLT), have been considered for the task. For compression 

purposes, the higher the capability of compressing information in fewer coefficients, the 

better the transform; for that reason, the Discrete Cosine Transform (DCT) has become the 

most widely used transform coding technique. 

 

Wavelet coding 
 

Wavelet coding techniques are also based on the idea that the coefficients of a transform that 

decorrelates the pixels of an image can be coded more efficiently than the original pixels 

themselves. The main difference between wavelet coding and DCT-based coding (Figure 4) 

is the omission of the first stage. Because wavelet transforms are capable of representing an 

input signal with multiple levels of resolution, and yet maintain the useful compaction 

properties of the DCT, the subdivision of the input image into smaller subimages is no longer 

necessary. Wavelet coding has been at the core of the latest image compression standards, 

most notably JPEG 2000, which is discussed in a separate short article. 

 

Image compression standards 
 

Work on international standards for  image  compression  started  in  the  late  1970s  with  

the CCITT (currently ITU-T) need to standardize binary image compression algorithms for 

Group 3 facsimile communications. Since then, many other committees and standards have 

been formed to produce de jure standards (such as JPEG), while several commercially 

successful initiatives have effectively become de facto standards (such as GIF). Image 

compression standards bring about many benefits, such as: (1) easier exchange of image files 

between different devices and applications; (2) reuse of existing hardware and software for a 

wider array of products; (3) existence of benchmarks and reference data sets for new and 

alternative developments. 

 

Binary image compression standards 
 

Work on binary image compression standards was initially motivated by CCITT Group 3 and 

4 facsimile standards. The Group 3 standard uses a non-adaptive, 1-D RLE technique in 

which the last K-1 lines of each group of K lines (for K = 2 or 4) are optionally coded in a 2- 

D manner, using the Modified Relative Element Address Designate (MREAD) algorithm. The 

Group 4 standard uses only the MREAD coding algorithm. Both classes of algorithms are 

non-adaptive and were optimized for a set of eight test images, containing a mix of 

representative documents, which sometimes resulted in data expansion when applied to 

different types of documents (e.g., half-tone images).. The Joint Bilevel Image Group 

(JBIG)– a joint committee of the ITU-T and ISO – has addressed these limitations and 

proposed two new standards 

 

(JBIG and JBIG2) which can be used to compress binary and gray-scale images of up to 6 

gray-coded bits/pixel. 

 

Continuous tone still image compression standards 
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For photograph quality images (both grayscale and color), different standards have 

been proposed, mostly based on lossy compression techniques. The most popular standard in 

this category, by far, is the JPEG standard, a lossy, DCT-based coding algorithm. Despite its 

great popularity and adoption, ranging from digital cameras to the World Wide Web, certain 

limitations of the original JPEG algorithm have motivated the recent development of two 

alternative standards, JPEG 2000 and JPEG-LS (lossless). JPEG, JPEG 2000, and JPEG-LS 

are described in separate short articles. 

 

 
 
Encode each pixel ignoring their inter-pixel dependencies. Among methods are: 

 

1. Entropy Coding: Every block of an image is entropy encoded based upon the Pk’s 

within a block. This produces variable length code for each block depending on 

spatial activities within the blocks. 

2.  Run-Length Encoding: Scan the image horizontally or vertically and while scanning 

assign a group of pixel with the same intensity into a pair (gi , li) where gi is the 

intensity and li is the length of the “run”. This method can also be used for detecting 

edges and boundaries of an object. It is mostly used for images with a small number 

of gray levels and is not effective for highly textured images. 

 

 

Example 2: Let the transition probabilities for run-length encoding of a binary image 

(0:black and 1:white) be p0 = P(0/1) and p1 = P(1/0). Assuming all runs are independent, find 

(a) average run lengths, (b) entropies of white and black runs, and (c) compression ratio. 

Solution: 

A run of length l ≥ 1 can be represented by a Geometric random variable (Grv) Xi 

with PMF P(Xi = l) = pi (1-pi) 
t-1 with i = 0,1 which corresponds to happening of 1st 

occurrences of 0 or 1 after l independent trials. (Note that (1-P(0/1)) = P(1/1) and (1-P(1/0)) 

= P(0/0)) and Thus, for the average we have 
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Using the same series formula, we get 
 

 
Huffman Encoding Algorithm: It consists of the following steps. 

1. Arrange symbols with probability Pk’s in a decreasing order and consider them as 

“leaf nodes” of a tree. 

2.  Merge two nodes with smallest prob to form a new node whose prob is the sum 

of the two merged nodes. Go to Step 1 and repeat until only two nodes are left 

(“root nodes”). 3 Arbitrarily assign 1’s and 0’s to each pair of branches merging 

into a node. 4 Read sequentially from root node to the leaf nodes to form the 

associated code for each symbol. 

 
Example 3: For the same image in the previous example, which requires 3 bits/pixel using 

standard PCM we can arrange the table on the next page. 
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Fig. Tree structure for Huffman Encoding 

Note that in this case, we have 

 
 

i.e., an average of 2 bits/pixel (instead of 3 bits/pixel using PCM) can be used to code the 

image. However, the drawback of the standard Huffman encoding method is that the codes 

have variable lengths. 
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PREDICTIVE ENCODING: 

Idea: Remove mutual redundancy among successive pixels in a region of support (ROS) or 

neighborhood and encode only the new information. This mehtod is based upon linear 

prediction. Let us start with 1-D linear predictors. An Nth order linear prediction of x(n)  

based on N previous samples is generated using a 1-D autoregressive (AR) model. 

 

 

ai s are model coefficients determined based on some sample signals. Now instead of 

encoding x(n) the prediction error. 

 

Is encoded as it requires substantially small number of bits. Then, at the receiver we 

reconstruct x(n) using the previous encoded values x(n-k) and the encoded error signal, i.e., 

 

 
This method is also referred to as differential PCM (DPCM). 

 

 

 
To understand the need for comapct image representation, consider the amount of 

data required to represent a 2 hour standard Definition(SD) using 720 x 480 x 24 bit pixel 

arrays. 
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A video is a sequence of video frames where each frame is full color still image. 

Because video player must display the frames sequentially at rates near 30 fps. Standard 

definition data must be accessed 30fps x (720 x 480) ppf x 3bpp = 31,104,000 bps. 

fps: frames per second, ppf: pixels per frame, bpp: bytes per pixel, bps: bytes per second. 

Thus a 2 hour movie consists of : = 31,104,000 bps x (602) sph x 2hrs 

where sph is second per hour = 2.24 x 1011 bytes = 224 GB of data. 

TWENTY SEVEN 8.5 GB dual layer DVD’s are needed to store it. 

To put 2 hours movie on a single DVD, each frame must be compressed by a factor of around 

26.3. 

The compression must be even higher for HD, where image resolution reach 1920 x 1080 x 

24 bits per image. 

Webpage images & High-resolution digital camera photos also are compressed to save 

storage space & reduce transmission time. 

Residential Internet connection delivers data at speeds ranging from 56kbps (conventional 

phone line) to more than 12 mbps (broadband). 

Time required to transmit a small 128 x 128 x 24 bit full color image over this range of speed 

is from 7.0 to 0.03 sec. 

Compression can reduce the transmission time by a factor of around 2 to 10 or more. 
 

Similarly, number of uncompressed full color images that an 8 Megapixel digital camere can 

store on a 1GB Memory card can be increased. 

Data compression: It refers to the process of reducting the amount of data required to 

represent a given quantity of information. 

Data Vs Information: 
 

Data and information are not the same thing; data are the means by which information is 

conveyed. 

Because various amount of data can be used to represent the same amount of information, 

representations that contain irrelevant or repeated information are said to contain redundant. 

 

 
In today’s multimedia wireless communication, major issue is bandwidth needed to satisfy real time 

transmission of image data. Compression is one of the good solutions to address this issue. 

Transform based compression algorithms are widely used in the field of compression, because of 

their de-correlation and other properties, useful in compression. In this paper, comparative study of 

compression methods is done based on their types. This paper addresses the issue of importance of 
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transform in image compression and selecting particular transform for image compression. A 

comparative study of performance of a variety of different image transforms is done base on 

compression ratio, entropy and time factor. 

The Role of Transforms in Image Compression (PDF Download Available). Available from: 

https://www.researchgate.net/publication/257251096_The_Role_of_Transforms_in_Image_Compr 

ession [accessed Jun 05 2018]. 
 

THE FLOW OF IMAGE COMPRESSION CODING: 

What is the so-called image compression coding? Image compression coding is to store the 

image into bit-stream as compact as possible and to display the decoded image in the monitor 

as exact as possible. Now consider an encoder and a decoder as shown in Fig. 1.3. When the 

encoder receives the original image file, the image file will be converted into a series of 

binary data, which is called the bit-stream. The decoder then receives the encoded bit-stream 

and decodes it to form the decoded image. If the total data quantity of the bit-stream is less 

than the total data quantity of the original image, then this is called image compression. The 

full compression flow is as shown in Fig. 1.3. 
 

In order to evaluate the performance of the image compression coding, it is necessary to 

define a measurement that can estimate the difference between the original image and the 

decoded image. Two common used measurements are the Mean Square Error (MSE) and the 

Peak Signal to Noise Ratio (PSNR), which are defined in (1.3) and (1.4), respectively. f(x,y) 

is the pixel value of the original image, and f’(x,y)is the pixel value of the decoded image. 

Most image compression systems are designed to minimize the MSE and maximize the 

PSNR. 
 

https://www.researchgate.net/publication/257251096_The_Role_of_Transforms_in_Image_Compression
https://www.researchgate.net/publication/257251096_The_Role_of_Transforms_in_Image_Compression
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The general encoding architecture of image compression system is shown is Fig. 1.4. The 

fundamental theory and concept of each functional block will be introduced in the following 

sections. 

 
 

 

 

 

 

 
 Reduce the Correlation between Pixels 
 

Why an image can be compressed? The reason is that the correlation between one 

pixel and its neighbor pixels is very high, or we can say that the values of one pixel and its 

adjacent pixels are very similar. Once the correlation between the pixels is reduced, we can 

take advantage of the statistical characteristics and the variable length coding theory to  

reduce the storage quantity. This is the most important part of the image compression 

algorithm; there are a lot of relevant processing methods being proposed. The best-known 

methods are as follows: 

 Predictive Coding: Predictive Coding such as DPCM (Differential Pulse Code 

Modulation) is a lossless coding method, which means that the decoded image and the 

original image have the same value for every corresponding element. 

 Orthogonal Transform: Karhunen-Loeve Transform (KLT) and Discrete Cosine 

Transform (DCT) are the two most well-known orthogonal transforms. The DCT- 

based image compression standard such as JPEG is a lossy coding method that will 

result in some loss of details and unrecoverable distortion. 

 Subband Coding: Subband Coding such as Discrete Wavelet Transform (DWT) is 

also a lossy coding method. The objective of subband coding is to divide the spectrum 

of one image into the lowpass and the highpass components. JPEG 2000 is a 2- 

dimension DWT based image compression standard. 

 QUANTIZATION 

The objective of quantization is to reduce the precision and to achieve higher 

compression ratio. For instance, the original image uses 8 bits to store one element for 

every pixel; if we use less bits such as 6 bits to save the information of the image,  

then the storage quantity will be reduced, and the image can be compressed. The 

shortcoming of quantization is that it is a lossy operation, which will result into loss of 

precision and unrecoverable distortion. The image compression standards such as 
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JPEG and JPEG 2000 have their own quantization methods, and the details of relevant 

theory will be introduced in the chapter 2. 

 
 ENTROPY CODING 

The main objective of entropy coding is to achieve less average length of the 

image. Entropy coding assigns codewords to the corresponding symbols according to 

the probability of the symbols. In general, the entropy encoders are used to compress 

the data by replacing symbols represented by equal-length codes with the code words 

whose length is inverse proportional to corresponding probability. The entropy 

encoder of JPEG and JPEG 2000 will also be introduced in the chapter 2. 

2 AN OVERVIEW OF IMAGE COMPRESSION STANDARD: 

In this chapter, we will introduce the fundamental theory of two well-known 

image compression standards –JPEG and JPEG 2000. 

 JPEG – JOINT PICTURE EXPERT GROUP 
 

Fig. 2.1 and 2.2 shows the Encoder and Decoder model of JPEG. We will introduce 

the operation and fundamental theory of each block in the following sections. 
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 DISCRETE COSINE TRANSFORM 

The next step after color coordinate conversion is to divide the three color 

components of the image into many 8×8 blocks. The mathematical definition of the Forward 

DCT and the Inverse DCT are as follows: 
 

 

The f(x,y) is the value of each pixel in the selected 8×8 block, and the F(u,v) is the 

DCT coefficient after transformation. The transformation of the 8×8 block is also a 8×8 block 

composed of F(u,v). 

The DCT is closely related to the DFT. Both of them taking a set of points from the 

spatial domain and transform them into an equivalent representation in the frequency domain. 

However, why DCT is more appropriate for image compression than DFT? The two main 

reasons are: 

1. The DCT can concentrate the energy of the transformed signal in low 

frequency, whereas the DFT can not. According to Parseval’s theorem, 

theenergy is the same in the spatial domain and in the frequency domain. 

Because the human eyes are less sensitive to the low frequency component, 

we can focus on the low frequency component and reduce the contribution 

of the high frequency component after taking DCT. 

2. 2. For image compression, the DCT can reduce the blocking effect than the 

DFT. 

After transformation, the element in the upper most left corresponding to zero 

frequency in both directions is the “DC coefficient” and the rest are called “AC 

coefficients.” 

 Quantization in JPEG: 

Quantization is the step where we actually throw away data. The DCT is a lossless 

procedure. The data can be precisely recovered through the IDCT (this isn’t entirely true 

because in reality no physical implementation can compute with perfect accuracy). During 
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Quantization every coefficients in the 8×8 DCT matrix is divided by a corresponding 

quantization value. The quantized coefficient is defined in (2.3), and the reverse the process 

can be achieved by the (2.4). 

 

The goal of quantization is to reduce most of the less important high frequency DCT 

coefficients to zero, the more zeros we generate the better the image will compress. The 

matrix Q generally has lower numbers in the upper left direction and large numbers in the 

lower right direction. Though the high-frequency components are removed, the IDCT still 

can obtain an approximate matrix which is close to the original 8×8 block matrix. The JPEG 

committee has recommended certain Q matrix that work well and the performance is close to 

the optimal condition, the Q matrix for luminance and chrominance components is defined in 

(2.5) and (2.6) 

 

 
 
 

 
 ZIGZAG SCAN: 

After quantization, the DC coefficient is treated separately from the 63 AC 

coefficients. The DC coefficient is a measure of the average value of the original 64 image 

samples. Because there is usually strong correlation between the DC coefficients of adjacent 

8×8 blocks, the quantized DC coefficient is encoded as the difference from the DC term of 

the previous block. This special treatment is worthwhile, as DC coefficients frequently 

contain a significant fraction of the total image energy. The other 63 entries are the AC 
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components. They are treated separately from the DC coefficients in the entropy coding 

process. 

 

 

 Entropy Coding in JPEG 

 Differential Coding: 

The mathematical representation of the differential coding is: 
 

 
 

 

We set DC0 = 0. DC of the current block DCi will be equal to DCi-1 + Diffi . 

Therefore, in the JPEG file, the first coefficient is actually the difference of DCs. 

Then the difference is encoded with Huffman coding algorithm together with the 

encoding of AC coefficients. 

Question: What are different types of redundancies in 

digital image? Explain in detail. 

 

 
(i) Redundancy can be broadly classified into Statistical redundancy and Psycho visual 

redundancy. 

(ii) Statistical redundancy can be classified into inter-pixel redundancy and coding 
redundancy. 
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(iii) Inter-pixel can be further classified into spatial redundancy and temporal redundancy. 

(iv) Spatial redundancy or correlation between neighboring pixel values. 

(v) Spectral redundancy or correlation between different color planes or spectral bands. 

(vi) Temporal redundancy or correlation between adjacent frames in a sequence of images in 

video applications. 

(vii) Image compression research aims at reducing the number of bits needed to represent an 

image by removing the spatial and spectral redundancies as much as possible. 

(viii) In digital image compression, three basic data redundancies can be identified and 

exploited: Coding redundancy, Inter-pixel redundancy and Psychovisual redundancy. 

 
 Coding Redundancy: 

o Coding redundancy is associated with the representation of information. 

o The information is represented in the form of codes. 
o If the gray levels of an image are coded in a way that uses more code symbols 

than absolutely necessary to represent each gray level then the resulting image 
is said to contain coding redundancy. 

 Inter-pixel Spatial Redundancy: 

o Interpixel redundancy is due to the correlation between the neighboring pixels 
in an image. 

o That means neighboring pixels are not statistically independent. The gray 
levels are not equally probable. 

o The value of any given pixel can be predicated from the value of its neighbors 
that is they are highly correlated. 

o The information carried by individual pixel is relatively small. To reduce the 

interpixel redundancy the difference between adjacent pixels can be used to 

represent an image. 

 Inter-pixel Temporal Redundancy: 
o Interpixel temporal redundancy is the statistical correlation between pixels 

from successive frames in video sequence. 

o Temporal redundancy is also called interframe redundancy. Temporal 
redundancy can be exploited using motion compensated predictive coding. 

o Removing a large amount of redundancy leads to efficient video compression. 

 Psychovisual Redundancy: 
o The Psychovisual redundancies exist because human perception does not 

involve quantitative analysis of every pixel or luminance value in the image. 

o It’s elimination is real visual information is possible only because the 

information itself is not essential for normal visual processing. 
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